Dries Vandamme

Learn More
The global demand for biomass for food, feed, biofuels, and chemical production is expected to increase in the coming decades. Microalgae are a promising new source of biomass that may complement agricultural crops. Production of microalgae has so far been limited to high-value applications. In order to realize large-scale production of microalgae biomass(More)
Microalgae hold great potential as a feedstock for biofuels or bulk protein or treatment of wastewater or flue gas. Realising these applications will require the development of a cost-efficient harvesting technology. Here, we explore the potential of flocculation induced by high pH for harvesting Chlorella vulgaris. Our results demonstrate that flocculation(More)
Although microalgae are considered as a promising feedstock for biofuels, the energy efficiency of the production process needs to be significantly improved. Due to their small size and low concentration in the culture medium, cost-efficient harvesting of microalgae is a major challenge. In this study, the use of electro-coagulation-flocculation (ECF) as a(More)
Due to their small size and low concentration in the culture medium, cost-efficient harvesting of microalgae is a major challenge. We evaluated the potential of cationic starch as a flocculant for harvesting microalgae using jar test experiments. Cationic starch was an efficient flocculant for freshwater (Parachlorella, Scenedesmus) but not for marine(More)
Microalgae and cyanobacteria are a promising new source of biomass that may complement agricultural crops to meet the increasing global demand for food, feed, biofuels and chemical production. Microalgae and cyanobacteria cultivation does not interfere directly with food production, but care should be taken to avoid indirect competition for nutrient(More)
Microalgae excrete relatively large amounts of algal organic matter (AOM) that may interfere with flocculation. The influence of AOM on flocculation of Chlorella vulgaris was studied using five different flocculation methods: aluminum sulfate, chitosan, cationic starch, pH-induced flocculation and electro-coagulation-flocculation (ECF). The presence of AOM(More)
This study was performed to investigate the applicability of submerged microfiltration as a first step of up-concentration for harvesting both a freshwater green algae species Chlorella vulgaris and a marine diatom Phaeodactylum tricornutum using three lab-made membranes with different porosity. The filtration performance was assessed by conducting the(More)
Herein a new approach for the application of wastewater nutrients for the cultivation of cyanobacteria or microalgae is described. Natural zeolite was used as medium for the sorption of ammonia from wastewater and subsequently as nitrogen releaser in cultures of Arthrospira platensis. The main scope of the present approach was to isolate ammonia from the(More)
In this study the combined effect of total ammoniacal nitrogen (TAN) concentration, initial biomass density and initial pH of the cultivation medium on growth of Arthrospira platensis was studied. The results indicate that TAN inhibition in relation to the initial biomass in unregulated pH cultures is neither a clearly biomass-independent nor(More)
A new and effective concept is proposed for microalgae cultivation and pre-harvesting using a membrane photobioreactor (MPBR), in which the bioreactor is coupled to membrane filtration by cultivating Chlorella vulgaris. A basic simulation was first performed to understand the behavior of the hybrid system. The effectiveness of the MPBR for cultivation and(More)