Drazen Domijan

Learn More
We proposed a new model of illusory contour formation based on the properties of dendritic computation. The basic elements of the network are a single-excitatory cell with two dendritic branches and an inhibitory cell. Both dendritic branches behave as an independent linear unit with a threshold. They sum all excitatory input from the nearby collinear(More)
A computational model is proposed in order to explain how bottom-up and top-down signals are combined into a unified perception of figure and background. The model is based on the interaction between the ventral and the dorsal stream. The dorsal stream computes saliency based on boundary signals provided by the simple and the complex cortical cells. Output(More)
Attention modulates the amount of excitatory and inhibitory lateral interactions in the visual cortex. A recurrent neural network is proposed to account for modulatory influence of top-down signals. In the model, two types of inhibitions are distinguished: dendritic and lateral inhibitions. Dendritic inhibition regulates the amount of impact that(More)
A two-stage model of sustained neural activity in the prefrontal cortex is proposed in order to simulate feature binding and capacity limits in visual working memory. In the first stage, object features are stored in parallel network layers without explicit conjunctions. A second stage binds features into integrated objects consistent with the recent(More)