Drake Deming

Learn More
A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is(More)
Recent surveys have revealed that planets intermediate in size between Earth and Neptune ('super-Earths') are among the most common planets in the Galaxy. Atmospheric studies are the next step towards developing a comprehensive understanding of this new class of object. Much effort has been focused on using transmission spectroscopy to characterize the(More)
Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths (1 − 3R⊕). Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit(More)
When Earth-mass extrasolar planets first become detectable, one challenge will be to determine which of these worlds harbor liquid water, a widely used criterion for habitability. Some of the first observations of these planets will consist of disc-averaged, time-resolved broadband photometry. To simulate such data, the Deep Impact spacecraft obtained light(More)
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely(More)
We report detection of strong infrared thermal emission from the nearby (d 1⁄4 19 pc) transiting extrasolar planet HD 189733b by measuring the flux decrement during its prominent secondary eclipse. A 6 hr photometric sequence using Spitzer’s infrared spectrograph in peak-up imaging mode at 16 m shows the secondary eclipse depth to be 0:551% 0:030%, with(More)
The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior, as opposed to the silicate-dominated composition found on Earth; the atmosphere can also differ from those in the Solar System. The solar C/O is 0.54 (ref.(More)
Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely(More)