#### Filter Results:

#### Publication Year

1981

2015

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

In this paper we study finite, connected, 4-valent graphs X which admit an action of a group G which is transitive on vertices and edges, but not transitive on the arcs of X. Such a graph X is said to be (G, 1Â2)-transitive. The group G induces an orientation of the edges of X, and a certain class of cycles of X (called alternating cycles) determined by the… (More)

Certain graph-theoretic properties and alternative deenitions of the Gray graph, the smallest known cubic edge-but not vertex-transitive graph, are discussed in detail.

A graph is said to be cyclic k-edge-connected, if at least k edges must be removed to disconnect it into two components, each containing a cycle. Such a set of k edges is called a cyclic-k-edge cutset and it is called a trivial cyclic-k-edge cutset if at least one of the resulting two components induces a single k-cycle. It is known that fullerenes, that… (More)

A connguration is weakly ag-transitive if its group of automor-phisms acts intransitively on ags but the group of all automorphisms and anti-automorphisms acts transitively on ags. It is shown that weakly ag-transitive conngurations are in one-to-one correspondence with bipartite 1 2-arc-transitive graphs of girth not less than 6. Several innnite families… (More)