Learn More
We describe the isolation, characterization, and sequence of cDNA clones encoding one subunit of the complex of membrane glycoproteins that forms part of the transmembrane connection between the extracellular matrix and the cytoskeleton. The cDNA sequence encodes a polypeptide of 89 kd that has features strongly suggesting the presence of a large N-terminal(More)
We describe mesendoderm morphogenesis during gastrulation in the frog Xenopus laevis and investigate the mechanics of these movements with tissue explants. When a dorsal marginal zone explant is plated onto fibronectin, the mesendoderm moves away from the dorsal axial tissues as an intact sheet. Mesendodermal cells within these explants display monopolar(More)
During Xenopus laevis gastrulation, the basic body plan of the embryo is generated by movement of the marginal zone cells of the blastula into the blastocoel cavity. This morphogenetic process involves cell adhesion to the extracellular matrix protein fibronectin (FN). Regions of FN required for the attachment and migration of involuting marginal zone (IMZ)(More)
Fibronectin (FN) is reported to be important for early morphogenetic movements in a variety of vertebrate embryos, but the cellular basis for this requirement is unclear. We have used confocal and digital time-lapse microscopy to analyze cell behaviors in Xenopus gastrulae injected with monoclonal antibodies directed against the central cell-binding domain(More)
Integrin-mediated cellular adhesion to components of the extracellular matrix (ECM) is important in a number of morphogenetic events that occur during vertebrate embryogenesis. Recent studies suggest that the focal adhesion kinase pp125FAK is involved in the regulation of integrin-dependent signaling processes triggered by cell adhesion to the ECM. We(More)
BACKGROUND Integrin recognition of fibronectin is required for normal gastrulation including the mediolateral cell intercalation behaviors that drive convergent extension and the elongation of the frog dorsal axis; however, the cellular and molecular mechanisms involved are unclear. RESULTS We report that depletion of fibronectin with antisense(More)
A new member of the thrombospondin gene family, designated thrombospondin-4, has been identified in the Xenopus laevis genome. The predicted amino acid sequence indicates that the protein is similar to the other members of this gene family in the structure of the type 3 repeats and the COOH-terminal domain. Thrombospondin-4 contains four type 2 repeats and(More)
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and(More)
Collective cell migration requires maintenance of adhesive contacts between adjacent cells, coordination of polarized cell protrusions, and generation of propulsive traction forces. We demonstrate that mechanical force applied locally to C-cadherins on single Xenopus mesendoderm cells is sufficient to induce polarized cell protrusion and persistent(More)
In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in(More)