Learn More
Immunocytochemistry has been used to examine the location of trkA, the high-affinity receptor for nerve growth factor, in adult rat dorsal root ganglia, trigeminal ganglia and spinal cord. TrkA immunoreactivity was observed in small and medium sized ganglion cells and in the dorsal horn of the spinal cord. In lumbar L4 and L5 ganglia trkA-immunoreactive(More)
The present investigation used an antibody directed against the extracellular domain of the signal transducing nerve growth factor receptor, trkA, to reveal immunoreactive perikarya or fibers within the olfactory bulb and tubercle, cingulate cortex, nucleus accumbens, striatum, endopiriform nucleus, septal/diagonal band complex, nucleus basalis, hippocampal(More)
The nucleotide sequences of the mitochondrial DNA (mtDNA) molecules of two nematodes, Caenorhabditis elegans [13,794 nucleotide pairs (ntp)], and Ascaris suum (14,284 ntp) are presented and compared. Each molecule contains the genes for two ribosomal RNAs (s-rRNA and l-rRNA), 22 transfer RNAs (tRNAs) and 12 proteins, all of which are transcribed in the same(More)
We have used an in vitro Golgi protein transport assay dependent on high molecular weight (greater than 100 kD) cytosolic and/or peripheral membrane proteins to study the requirements for transport from the cis- to the medial-compartment. Fractionation of this system indicates that, besides the NEM-sensitive fusion protein (NSF) and the soluble NSF(More)
We report conditions under which Golgi membranes depleted of peripheral membrane proteins can be reconstituted for intra-cisternal vesicular transport. Analysis of the reconstitution reveals requirements for N-ethylmaleimide-sensitive fusion protein, a purified peripheral protein involved in the fusion stage of vesicular transport, as well as other(More)
Three new and likely related components of the cellular fusion machinery have been purified from bovine brain cytosol, termed alpha-SNAP (35 kd), beta-SNAP (36 kd), and gamma-SNAP (39 kd). Transport between cisternae of the Golgi complex measured in vitro requires SNAP activity during the membrane fusion stage, and each SNAP is capable of binding the(More)
TrkA, a tyrosine kinase receptor, is an essential component of the nerve growth factor (NGF) response pathway. The binding of NGF to the receptor induces receptor autophosphorylation and activation of intracellular signaling pathways, resulting in diverse biological effects. We prepared polyclonal antibodies against the entire extracellular domain of rat(More)
In development approximately 70-80% of dorsal root ganglion (DRG) cells are dependent on nerve growth factor (NGF) for their survival, while in the adult only some 40% of DRG cells express the high-affinity NGF receptor, trkA. This discrepancy suggests that trkA expression, and therefore neurotrophin sensitivity, may alter as the animal matures. We have(More)
TrkA, a member of the receptor tyrosine kinase family, binds nerve growth factor (NGF) and subsequently activates intracellular signaling pathways. Previous studies have found variable and weak interaction of the TrkA receptor with neurotrophin 3 (NT-3), another member of the NGF family. TrkA is expressed in two splice forms, differing in the presence of an(More)
The neurons of the dorsal root ganglia (DRG) that supply muscle spindles require target-derived factors for survival. One necessary factor for these neurons is neurotrophin-3 (NT3). To determine whether NT3 can promote the survival of these neurons in the absence of other target-derived factors, we analyzed the effects of exogenous NT3 after early limb bud(More)