Douglas N. Robinson

Learn More
We analyzed the structure of cytoplasmic bridges called ring canals in Drosophila egg chambers. Two mutations, hu-li tai shao (hts) and kelch, disrupt normal ring canal development. We raised antibodies against the carboxy-terminal tail of hts and found that they recognize a protein that localizes specifically to ring canals very early in ring canal(More)
In this review, we focus on recent discoveries regarding the molecular basis of cleavage furrow positioning and contractile ring assembly and contraction during cytokinesis. However, some of these mechanisms might have different degrees of importance in different organisms. This synthesis attempts to uncover common themes and to reveal potential(More)
We have developed a system for performing interaction genetics in Dictyostelium discoideum that uses a cDNA library complementation/multicopy suppression strategy. Chemically mutagenized cells were screened for cytokinesis-deficient mutants and one mutant was subjected to library complementation. Isolates of four different genes were recovered as modifiers(More)
During cytokinesis, the cell's equator contracts against the cell's global stiffness. Identifying the biochemical basis for these mechanical parameters is essential for understanding how cells divide. To achieve this goal, the distribution and flux of the cell division machinery must be quantified. Here we report the first quantitative analysis of the(More)
The Drosophila kelch gene produces a single transcript with a UGA stop codon separating two open reading frames (ORF1 and ORF2). From the transcript, 76 kDa ORF1 and 160 kDa full-length (ORF1 + ORF2) proteins are made. The expression of these two proteins is regulated in a tissue-specific manner causing the ratio of full-length to ORF1 protein to vary in(More)
Cytokinesis, the fission of a mother cell into two daughter cells, is a simple and dramatic cell shape change. Here, we examine the dynamics of cytokinesis by using a combination of microscopy, dynamic measurements, and genetic analysis. We find that cytokinesis proceeds through a single sequence of shape changes, but the kinetics of the transformation from(More)
Cell division is inherently mechanical, with cell mechanics being a critical determinant governing the cell shape changes that accompany progression through the cell cycle. The mechanical properties of symmetrically dividing mitotic cells have been well characterized, whereas the contribution of cellular mechanics to the strikingly asymmetric divisions of(More)
In Drosophila oogenesis, the development of a mature oocyte depends on having properly developed ring canals that allow cytoplasm transport from the nurse cells to the oocyte. Ring canal assembly is a step-wise process that transforms an arrested cleavage furrow into a stable intercellular bridge by the addition of several proteins. Here we describe a new(More)
Drosophila kelch has four protein domains, two of which are found in kelch-family proteins and in numerous nonkelch proteins. In Drosophila, kelch is required to maintain ring canal organization during oogenesis. We have performed a structure-function analysis to study the function of Drosophila kelch. The amino-terminal region (NTR) regulates the timing of(More)
INTRODUCTION Contractile networks are fundamental to many cellular functions, particularly cytokinesis and cell motility. Contractile networks depend on myosin-II mechanochemistry to generate sliding force on the actin polymers. However, to be contractile, the networks must also be crosslinked by crosslinking proteins, and to change the shape of the cell,(More)