Douglas Lundholm

Learn More
In this Master of Science Thesis I introduce geometric algebra both from the traditional geometric setting of vector spaces, and also from a more combinatorial view which simplifies common relations and operations. This view enables us to define Clifford algebras with scalars in arbitrary rings and provides new suggestions for an infinite-dimensional(More)
A weighted Hilbert space approach to the study of zero-energy states of supersymmetric matrix models is introduced. Applied to a related but technically simpler model, it is shown that the spectrum of the corresponding weighted Hamiltonian simplifies to become purely discrete for sufficient weights. This follows from a bound for the number of negative(More)
We explicitly construct a (unique) Spin(9)×SU (2) singlet state, φ, involving only the fermionic degrees of freedom of the supersymmetric matrix-model corresponding to reduced 10-dimensional super Yang-Mills theory, resp. supermembranes in 11-dimensional Minkowski space. Any non-singular wavefunction annihilated by the 16 super-charges of SU (2) matrix(More)