Douglas L. Welch

Learn More
The MACHO Project is a search for dark matter in the form of massive compact halo objects (Machos). Photometric monitoring of millions of stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge is used to search for gravitational microlensing events caused by these otherwise invisible objects. Analysis of the first 2.1(More)
Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope, and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about(More)
We report the successful identification of the type of the supernova responsible for the supernova remnant SNR 0509-675 in the Large Magellanic Cloud (LMC) using Gemini spectra of surrounding light echoes. The ability to classify outbursts associated with centuries-old remnants provides a new window into several aspects of supernova research and is likely(More)
η Carinae is one of the most massive binary stars in the Milky Way. It became the second-brightest star in our sky during its mid-nineteenth-century 'Great Eruption', but then faded from view (with only naked-eye estimates of brightness). Its eruption is unique in that it exceeded the Eddington luminosity limit for ten years. Because it is only 2.3(More)
Using 7 years of MACHO survey data, we present a new determination of the optical depth to microlensing towards the Galactic bulge. We select the sample of 62 microlensing events (60 unique) on clump giant sources and perform a detailed efficiency analysis. We use only the clump giant sources because these are bright bulge stars and are not as strongly(More)
We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models(More)
The light from historical supernovae could in principle still be visible as scattered-light echoes centuries after the explosion. The detection of light echoes could allow us to pinpoint the supernova event both in position and age and, most importantly, permit the acquisition of spectra to determine the 'type' of the supernova centuries after the direct(More)
We present the lightcurves of two microlensing events from the MACHO Project data that are likely to be due to lenses with masses similar to Jupiter’s mass. Although the MACHO Project survey data are not sufficient to definitively establish the identification of planetary mass lenses in these cases, observations by microlensing follow-up networks such as(More)