Douglas J. Tobias

Learn More
A significant modification to the additive all-atom CHARMM lipid force field (FF) is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains. Motivated by the current CHARMM lipid FF (C27 and C27r) systematically yielding values of the surface area per(More)
We report a constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal (L alpha) phase bilayer of dipalmitoylphosphatidylcholine at 50 degrees C and 28 water molecules/lipid. We have shown that the bilayer is stable throughout the 1550-ps simulation and have demonstrated convergence of the system dimensions. Several(More)
We report a 1.4-ns constant-pressure molecular dynamics simulation of cholesterol at 12.5 mol% in a dipalmitoylphosphatidylcholine (DPPC) bilayer at 50 degrees C and compare the results to our previous simulation of a pure DPPC bilayer. The interlamellar spacing was increased by 2.5 A in the cholesterol-containing bilayer, consistent with x-ray diffraction(More)
A novel protocol has been developed for comparing the structural properties of lipid bilayers determined by simulation with those determined by diffraction experiments, which makes it possible to test critically the ability of molecular dynamics simulations to reproduce experimental data. This model-independent method consists of analyzing data from(More)
The reaction of ozone with aqueous sodium bromide particles is investigated with a combination of aerosol chamber experiments, kinetics modeling, and molecular dynamics simulations. The molecular bromine production in the chamber experiments is approximately an order of magnitude greater than that predicted by known chemistry in the gas and bulk aqueous(More)
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical(More)
Aqueous ion-containing interfaces are ubiquitous and play a key role in a plethora of physical, chemical, atmospheric, and biological processes, from which we mention just a few illustrative examples: (i) Ions at the air/water interface are important for atmospheric chemistry involving ocean surfaces and seawater aerosols,1-5 as well as that of the Arctic(More)
The dynamical coupling between proteins and their hydration water is important for the understanding of macromolecular function in a cellular context. In the case of membrane proteins, the environment is heterogeneous, composed of lipids and hydration water, and the dynamical coupling might be more complex than in the case of the extensively studied soluble(More)
We report the results of a constant pressure and temperature molecular dynamics simulation of a gel-phase dipalmitoylphosphatidylcholine bilayer with nw = 11.8 water molecules/lipid at 19 degrees C. The results of the simulation were compared in detail with a variety of x-ray and neutron diffraction data. The average positions of specific carbon atoms along(More)
The voltage-gated proton channel (Hv1) is homologous to the voltage-sensing domain (VSD) of voltage-gated potassium (Kv) channels but lacks a separate pore domain. The Hv1 monomer has dual functions: it gates the proton current and also serves as the proton conduction pathway. To gain insight into the structure and dynamics of the yet unresolved proton(More)