Douglas H. Phanstiel

Learn More
Increasing evidence suggests that interactions between regulatory genomic elements play an important role in regulating gene expression. We generated a genome-wide interaction map of regulatory elements in human cells (ENCODE tier 1 cells, K562, GM12878) using Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) experiments targeting six(More)
BACKGROUND The complexity and heterogeneity of the human plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. Refined genetically engineered mouse (GEM) models of human cancer have been shown to faithfully recapitulate the molecular, biological, and clinical features of human(More)
BACKGROUND Combined immunodeficiency with multiple intestinal atresias (CID-MIA) is a rare hereditary disease characterized by intestinal obstructions and profound immune defects. OBJECTIVE We sought to determine the underlying genetic causes of CID-MIA by analyzing the exomic sequences of 5 patients and their healthy direct relatives from 5 unrelated(More)
We have implemented a strategy to identify tumor antigens that induce a humoral immune response in lung cancer based on the analysis of tumor cell proteins. Chromatographically fractionated protein extracts from three lung cancer cell lines were subjected to Western blotting and hybridization with individual sera to determine serum antibody binding. Two(More)
MOTIVATION Interpretation and communication of genomic data require flexible and quantitative tools to analyze and visualize diverse data types, and yet, a comprehensive tool to display all common genomic data types in publication quality figures does not exist to date. To address this shortcoming, we present Sushi.R, an R/Bioconductor package that allows(More)
MOTIVATION Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) is an established method for detecting genome-wide looping interactions at high resolution. Current ChIA-PET analysis software packages either fail to correct for non-specific interactions due to genomic proximity or only address a fraction of the steps required for data(More)
The three-dimensional arrangement of the human genome comprises a complex network of structural and regulatory chromatin loops important for coordinating changes in transcription during human development. To better understand the mechanisms underlying context-specific 3D chromatin structure and transcription during cellular differentiation, we generated(More)
The study of genomic interactions has been greatly facilitated by techniques such as chromatin conformation capture with high-throughput sequencing (Hi-C). These genome-wide experiments generate large amounts of data that require careful analysis to obtain useful biological conclusions. However, development of the appropriate software tools is hindered by(More)
The human genome is hierarchically organized into local and long-range structures that help shape cell-type-specific transcription patterns. Transfer RNA (tRNA) genes (tDNAs), which are transcribed by RNA polymerase III (RNAPIII) and encode RNA molecules responsible for translation, are dispersed throughout the genome and, in many cases, linearly organized(More)
The study of genomic interactions has been greatly facilitated by techniques such as chromatin conformation capture with high-throughput sequencing (Hi-C). These genome-wide experiments generate large amounts of data that require careful analysis to obtain useful biological conclusions. However, development of the appropriate software tools is hindered by(More)
  • 1