Learn More
Voltage-dependent Ca2+ channels play a central role in controlling neurotransmitter release at the synapse. They can be inhibited by certain G-protein-coupled receptors, acting by a pathway intrinsic to the membrane. Here we show that this inhibition results from a direct interaction between the G-protein betagamma complex and the pore-forming alpha1(More)
Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD). Here, we demonstrate that Abeta-binding alcohol dehydrogenase (ABAD) is a direct molecular link from Abeta to mitochondrial toxicity. Abeta interacts with ABAD in the mitochondria of AD patients and transgenic mice. The crystal structure of(More)
A sensitive immunohistochemical method for phosphorylated alpha-synuclein was used to stain sets of sections of spinal cord and tissue from 41 different sites in the bodies of 92 subjects, including 23 normal elderly, 7 with incidental Lewy body disease (ILBD), 17 with Parkinson's disease (PD), 9 with dementia with Lewy bodies (DLB), 19 with Alzheimer's(More)
OBJECTIVE While the apolipoprotein E (APOE) epsilon allele is a well-established risk factor for late-onset Alzheimer's disease (AD), initial genome scans using microsatellite markers in late-onset AD failed to identify this locus on chromosome 19. Recently developed methods for the simultaneous assessment of hundreds of thousands of single nucleotide(More)
Receptor for Advanced Glycation Endproducts (RAGE), a multiligand receptor in the immunoglobulin superfamily, functions as a signal-transducing cell surface acceptor for amyloid-beta peptide (Abeta). In view of increased neuronal expression of RAGE in Alzheimer's disease, a murine model was developed to assess the impact of RAGE in an Abeta-rich(More)
Voltage-dependent Ca2+ channels are heteromeric complexes found in the plasma membrane of virtually all cell types and show a high level of electrophysiological and pharmacological diversity. Associated with the pore-forming alpha 1 subunit are the membrane anchored, largely extracellular alpha2-delta, the cytoplasmic beta and sometimes a transmembrane(More)
Neurofibrillary tangles (NFT) constitute one of the cardinal histopathological features of Alzheimer's disease (AD). To explore in vivo molecular processes involved in the development of NFTs, we compared gene expression profiles of NFT-bearing entorhinal cortex neurons from 19 AD patients, adjacent non-NFT-bearing entorhinal cortex neurons from the same(More)
While an extensive literature is now available on age-related differences in white matter integrity measured by diffusion MRI, relatively little is known about the relationships between diffusion and cognitive functions in older adults. Even less is known about whether these relationships are influenced by the apolipoprotein (APOE) ε4 allele, despite(More)
The Brain Donation Program at Sun Health Research Institute has been in continual operation since 1987, with over 1000 brains banked. The population studied primarily resides in the retirement communities of northwest metropolitan Phoenix, Arizona. The Institute is affiliated with Sun Health, a nonprofit community-owned and operated health care provider.(More)
Inflammatory activation of microglia in response to neurodegenerative changes in diseases such as Alzheimer's disease (AD) and Parkinson's disease has been extensively described. These observations have suggested that inflammation could be contributing to disease progression. In this paper, the potential role of CD200 and CD200 receptor (CD200R), whose(More)