Douglas C. Dean

Learn More
We present evidence that phosphorylation of the C-terminal region of Rb by Cdk4/6 initiates successive intramolecular interactions between the C-terminal region and the central pocket. The initial interaction displaces histone deacetylase from the pocket, blocking active transcriptional repression by Rb. This facilitates a second interaction that leads to(More)
We present evidence that Rb forms a repressor containing histone deacetylase (HDAC) and the hSWI/SNF nucleosome remodeling complex, which inhibits transcription of genes for cyclins E and A and arrests cells in the G1 phase of the cell cycle. Phosphorylation of Rb by cyclin D/cdk4 disrupts association with HDAC, relieving repression of the cyclin E gene and(More)
Previously, we found that Rb can actively repress transcription of cell cycle genes by binding and inactivating transcription factors at the promoter. Here, we demonstrate that Rb can also repress transcription of endogenous cell cycle genes containing E2F sites through recruitment of histone deacetylase, which deacetylates histones on the promoter, thereby(More)
Mammalian myogenesis is biphasic: primary myoblasts fuse to form primary myotubes, then secondary myoblasts align along the primary myotubes and form secondary myotubes, which comprise most of adult muscle. We provide evidence that an integrin (VLA-4) and its counter receptor (VCAM-1) have a role in secondary myogenesis. Both receptors are synthesized by(More)
Vascular cell adhesion molecule-1 (VCAM-1) was first identified as a protein that appears on the surface of endothelial cells after exposure to inflammatory cytokines. Through interaction with its integrin counter receptor VLA-4, VCAM-1 mediates cell-cell interactions important for immune function. We have cloned and begun characterization of the promoter(More)
Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their(More)
A number of genes, spanning the evolutionary scale from yeast to mammals, that are involved in spatial and temporal patterning during development contain zinc finger and homeodomain motifs. One such zinc finger/homeodomain protein is Drosophila Zfh-1, a member of the zfh family of Drosophila genes, which is expressed in muscle precursors and is critical for(More)
Loss of cell-cycle control is a hallmark of neoplastic cells. One regulator of the critical G1 to S-phase transition in the cell cycle is the retinoblastoma tumour suppressor protein Rb, which interacts with the E2F family of cell-cycle transcription factors to repress gene transcription required for this transition. Through its interaction with E2F, Rb(More)
Rb inhibits progression from G1 to S phase of the cell cycle. It associates with a number of cellular proteins; however, the nature of these interactions and their relative significance in cell cycle regulation are still unclear. We present evidence that Rb must normally interact with the E2F family of transcription factors to arrest cells in G1, and that(More)
Here, we show a role for the RB1 family proteins in directing full heterochromatin formation. Mouse embryonic fibroblasts that are triply deficient for RB1 (retinoblastoma 1), RBL1 (retinoblastoma-like 1) and RBL2 (retinoblastoma-like 2) - known as TKO cells - show a marked genomic instability, which is coincidental with decreased DNA methylation, increased(More)