Learn More
Inferior temporal (IT) object representations have been intensively studied in monkeys and humans, but representations of the same particular objects have never been compared between the species. Moreover, IT's role in categorization is not well understood. Here, we presented monkeys and humans with the same images of real-world objects and measured the IT(More)
Perceptual decision making typically entails the processing of sensory signals, the formation of a decision, and the planning and execution of a motor response. Although recent studies in monkeys and humans have revealed possible neural mechanisms for perceptual decision making, much less is known about how the decision is subsequently transformed into a(More)
Voxel-Based Morphometry (VBM) has been used for several years to study differences in brain structure between populations. Recently, a longitudinal version of VBM has been used to show changes in gray matter associated with relatively short periods of training. In the present study we use fMRI and three different standard implementations of longitudinal(More)
Face recognition is a complex cognitive process that requires distinguishable neuronal representations of individual faces. Previous functional magnetic resonance imaging (fMRI) studies using the "fMRI-adaptation" technique have suggested the existence of face-identity representations in face-selective regions, including the fusiform face area (FFA). Here,(More)
Visual attention enhances the responses of visual neurons that encode the attended location. Several recent studies have shown that attention also decreases correlations between fluctuations in the responses of pairs of neurons (termed spike count correlation or r(SC)). These results are consistent with two hypotheses. First, attention-related changes in(More)
Human inferior temporal cortex contains category-selective visual regions, including the fusiform face area (FFA) and the parahippocampal place area (PPA). These regions are defined by their greater category-average activation to the preferred category (faces and places, respectively) relative to nonpreferred categories. The approach of investigating(More)
Neurons in sensory cortical areas are tuned to multiple dimensions, or features, of their sensory space. Understanding how single neurons represent multiple features is of great interest for determining the informative dimensions of the neurons' response, the decoding algorithms appropriate for extracting this information from the neuronal population, and(More)
Small differences between the left and right sides of otherwise symmetric traits are related to developmental instability and can indicate how well the genome is suited to current developmental conditions. As these small asymmetries (termed uctuating asymmetry, or FA) can reveal how well the genome is suited to the environment, researchers have postulated(More)
Perceptual decision making is a multi-stage process where incoming sensory information is used to select one option from several alternatives. Researchers typically have adopted one of two conceptual frameworks to define the criteria for determining whether a brain region is involved in decision computations. One framework, building on single-unit(More)
Recent studies have shown that cognitive factors such as spatial and feature-based attention, learning, and task-switching can change the extent to which the trial-to-trial variability in the responses of neurons in sensory cortex is shared between pairs of neurons (for review, see Cohen and Kohn, 2011). Global cognitive factors related to concentration,(More)