Learn More
We investigated whether the monkey superior colliculus (SC), an important midbrain structure for the regulation of saccadic eye movements, contains neurons with activity patterns sufficient to control both the cancellation and the production of saccades. We used a countermanding task to manipulate the probability that, after the presentation of a stop(More)
The stop-signal or countermanding task probes the ability to control action by requiring subjects to withhold a planned movement in response to an infrequent stop signal which they do with variable success depending on the delay of the stop signal. We investigated whether performance of humans and macaque monkeys in a saccade countermanding task was(More)
The selection and control of action is a critical problem for both biological and machine animated systems that must operate in complex real world situations. Visually guided eye movements provide a fruitful and important domain in which to investigate mechanisms of selection and control. Our work has focused on the neural processes that select the target(More)
The countermanding (or stop signal) task probes the control of the initiation of a movement by measuring subjects' ability to withhold a movement in various degrees of preparation in response to an infrequent stop signal. Previous research found that saccades are initiated when the activity of movement-related neurons reaches a threshold, and saccades are(More)
Damage to the monkey superior colliculus (SC) produces deficits in the generation of saccadic eye movements. Recovery of the accuracy of saccades is rapid, but saccadic latency and peak velocity recover slowly or not at all. In the present experiments we revisited the issue of recovery of function following localized lesions of the SC using three(More)
The onset latencies commonly made indirect comparisons are often confounded of single-unit responses evoked by flashing visual stimuli were due to differences in experimental and analytic methodology. measured in the parvocellular (P) and magnocellular (M) layers In addition, the visual response latencies of several key areas of the dorsal lateral(More)
  • 1