Learn More
This document describes release 2.0 of the SimpleScalar tool set, a suite of free, publicly available simulation tools that offer both detailed and high-performance simulation of modern microprocessors. The new release offers more tools and capabilities, precompiled binaries, cleaner interfaces, better documentation, easier installation, improved(More)
Memory scaling is in jeopardy as charge storage and sensing mechanisms become less reliable for prevalent memory technologies, such as DRAM. In contrast, phase change memory (PCM) storage relies on scalable current and thermal mechanisms. To exploit PCM's scalability as a DRAM alternative, PCM must be architected to address relatively long latencies, high(More)
Growing wire delays will force substantive changes in the designs of large caches. Traditional cache architectures assume that each level in the cache hierarchy has a single, uniform access time. Increases in on-chip communication delays will make the hit time of large on-chip caches a function of a line's physical location within the cache. Consequently,(More)
Modern computer systems have been built around the assumption that persistent storage is accessed via a slow, block-based interface. However, new byte-addressable, persistent memory technologies such as phase change memory (PCM) offer fast, fine-grained access to persistent storage. In this paper, we present a file system and a hardware architecture that(More)
This paper examines the effect of technology scaling and microarchitectural trends on the rate of soft errors in CMOS memory and logic circuits. We describe and validate an end-to-end model that enables us to compute the soft error rates (SER) for existing and future microprocessor-style designs. The model captures the effects of two important masking(More)
Since 2005, processor designers have increased core counts to exploit Moore's Law scaling, rather than focusing on single-core performance. The failure of Dennard scaling, to which the shift to multicore parts is partially a response, may soon limit multicore scaling just as single-core scaling has been curtailed. This paper models multicore scaling limits(More)
As improvements in per-transistor speed and energy efficiency diminish, radical departures from conventional approaches are needed to continue improvements in the performance and energy efficiency of general-purpose processors. One such departure is approximate computing, where error in computation is acceptable and the traditional robust digital(More)
This paper describes the <b>polymorphous</b> TRIPS architecture which can be configured for different granularities and types of parallelism. TRIPS contains mechanisms that enable the processing cores and the on-chip memory system to be configured and combined in different modes for instruction, data, or thread-level parallelism. To adapt to small and(More)
As leakage and other charge storage limitations begin to impair the scalability of DRAM, non-volatile resistive memories are being developed as a potential replacement. Unfortunately, current error correction techniques are poorly suited to this emerging class of memory technologies. Unlike DRAM, PCM and other resistive memories have wear lifetimes,(More)
Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we designed and built a composable, reconfigurable hardware fabric based on field programmable gate(More)