Learn More
Specific adaptors regulate the activation of initiator caspases; for example, FADD and Apaf-1 engage caspases 8 and 9, respectively. The adaptors ASC, Ipaf and RIP2 have each been proposed to regulate caspase-1 (also called interleukin (IL)-1 converting enzyme), which is activated within the 'inflammasome', a complex comprising several adaptors. Here we(More)
MCL1 is essential for the survival of stem and progenitor cells of multiple lineages, and is unique among pro-survival BCL2 family members in that it is rapidly turned over through the action of ubiquitin ligases. B- and mantle-cell lymphomas, chronic myeloid leukaemia, and multiple myeloma, however, express abnormally high levels of MCL1, contributing to(More)
Mutations in the genes encoding the Wnt receptor Frizzled-4 (FZD4), coreceptor LRP5, or the ligand Norrin disrupt retinal vascular development and cause ophthalmic diseases. Although Norrin is structurally unrelated to Wnts, it binds FZD4 and activates the canonical Wnt pathway. Here we show that the tetraspanin Tspan12 is expressed in the retinal(More)
Paracaspase (MALT1), a member of an evolutionarily conserved superfamily of caspase-like proteins, has been shown to bind and colocalize with the protein Bcl10 in vitro and, because of this association, has been suggested to be involved in the CARMA1-Bcl10 pathway of antigen-induced nuclear factor kappaB (NF-kappaB) activation. We demonstrate that primary T(More)
Metastasis, which commonly uses lymphatics, accounts for much of the mortality associated with cancer. The vascular endothelial growth factor (VEGF)-C coreceptor, neuropilin-2 (Nrp2), modulates but is not necessary for developmental lymphangiogenesis, and its significance for metastasis is unknown. An antibody to Nrp2 that blocks VEGFC binding disrupts(More)
De-ubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human(More)
  • Jing Qing, Xiangnan Du, +16 authors Avi Ashkenazi
  • 2009
Overexpression of FGF receptor 3 (FGFR3) is implicated in the development of t(4;14)-positive multiple myeloma. While FGFR3 is frequently overexpressed and/or activated through mutations in bladder cancer, the functional importance of FGFR3 and its potential as a specific therapeutic target in this disease have not been elucidated in vivo. Here we report(More)
Here we describe the generation of an antibody-drug conjugate (ADC) consisting of a humanized anti-CD79b antibody that is conjugated to monomethylauristatin E (MMAE) through engineered cysteines (THIOMABs) by a protease cleavable linker. By using flow cytometry, we detected the surface expression of CD79b in almost all non-Hodgkin lymphoma (NHL) and chronic(More)
Fibroblast growth factor receptor 3 (FGFR3) belongs to a family of receptor tyrosine kinases that control cell proliferation, differentiation, and survival. Aberrant activation of FGFR3 via overexpression or mutation is a frequent feature of bladder cancer; however, its molecular and cellular consequences and functional relevance to carcinogenesis are not(More)
Posttranslational modification of proteins with polyubiquitin occurs in diverse signaling pathways and is tightly regulated to ensure cellular homeostasis. Studies employing ubiquitin mutants suggest that the fate of polyubiquitinated proteins is determined by which lysine within ubiquitin is linked to the C terminus of an adjacent ubiquitin. We have(More)