Doron Kabaso

Learn More
Whereas neuronal numbers are largely preserved in normal aging, subtle morphological changes occur in dendrites and spines, whose electrotonic consequences remain unexplored. We examined age-related morphological alterations in 2 types of pyramidal neurons contributing to working memory circuits in the macaque prefrontal cortex (PFC): neurons in the(More)
This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction(More)
Intercellular membrane nanotubes (ICNs) are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition remains elusive. In the present study, a raft marker,(More)
Structural changes of neurons in the brain during aging are complex and not well understood. Neurons have significant homeostatic control of essential brain functions, including synaptic excitability, gene expression, and metabolic regulation. Any deviations from the norm can have severe consequences as seen in aging and injury. In this review, we present(More)
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane,(More)
  • Roghayeh Imani, Doron Kabaso, Mateja Erdani Kreft, Ekaterina Gongadze, Samo Penič, Kristina Eleršič +4 others
  • 2013
Aim To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular titanium dioxide (TiO 2) nano-structures. Methods Using anodization method, TiO 2 surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference.(More)
In normal aging, neocortical pyramidal neuron dendrites and dendritic spines undergo significant changes [1,2], often with concomitant physiological changes. In layer 3 of the prefrontal cortex (PFC) of the rhesus monkey, aged pyramidal neurons have a significantly higher input resistance and higher action potential (AP) firing rates in vitro compared to(More)
Layer 3 (L3) pyramidal neurons in the lateral prefrontal cortex (LPFC) of rhesus monkeys exhibit dendritic regression, spine loss and increased action potential (AP) firing rates during normal aging. The relationship between these structural and functional alterations, if any, is unknown. To address this issue, morphological and electrophysiological(More)
In regulated exocytosis the merger between the vesicle and the plasma membranes leads to the formation of an aqueous channel (a fusion-pore), through which vesicular secretions exit into the extracellular space. A fusion pore was thought to be a short-lived intermediate preceding full-fusion of the vesicle and the plasma membranes (full-fusion exocytosis).(More)
Intercellular membrane nanotubes (ICNs) serve as a very specific transport system between neighboring cells. The underlying mechanisms responsible for the transport of membrane components and vesicular dilations along the ICNs are not clearly understood. The present study investigated the spatial distribution of anisotropic membrane components of tubular(More)