Learn More
Brain surface electrocorticographic (ECoG) recordings can investigate human brain electrophysiology at the cortical surface with exceptionally high signal to noise ratio and spatio-temporal resolution. To be able to use the high spatial resolution of ECoG for accurate brain function mapping and neurophysiology studies, the exact location of the ECoG(More)
The neurophysiological underpinnings of functional magnetic resonance imaging (fMRI) are not well understood. To understand the relationship between the fMRI blood oxygen level dependent (BOLD) signal and neurophysiology across large areas of cortex, we compared task related BOLD change during simple finger movement to brain surface electric potentials(More)
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used to measure human brain function and relies on the assumption that hemodynamic changes mirror the underlying neuronal activity. However, an often reported saturation of the BOLD response at high movement rates has led to the notion of a mismatch in(More)
Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of(More)
The functional significance of electrical rhythms in the mammalian brain remains uncertain. In the motor cortex, the 12-20 Hz beta rhythm is known to transiently decrease in amplitude during movement, and to be altered in many motor diseases. Here we show that the activity of neuronal populations is phase-coupled with the beta rhythm on rapid timescales,(More)
We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and motor systems. A naive decomposition technique of electrocorticographic power spectral measurements reveals that broadband spectral changes reliably track task(More)
A striking feature of some field potential recordings in visual cortex is a rhythmic oscillation within the gamma band (30-80 Hz). These oscillations have been proposed to underlie computations in perception, attention, and information transmission. Recent studies of cortical field potentials, including human electrocorticography (ECoG), have emphasized(More)
The learning of a motor task is known to be improved by sleep, and sleep spindles are thought to facilitate this learning by enabling synaptic plasticity. In this study subjects implanted with electrocorticography (ECoG) arrays for long-term epilepsy monitoring were trained to control a cursor on a computer screen by modulating either the high-gamma or(More)
Electrocorticographic recording is now being used in a wide variety of experimental settings. We present a simple method which can be used to estimate electrode position with respect to brain gyral anatomy using a pre-implantation MRI and post-implantation coronal and sagittal x-rays. It is semi-automated, with the user manually rotating and scaling an(More)
For the development of minimally invasive brain-computer interfaces (BCIs), it is important to accurately localize the area of implantation. Using fMRI, we investigated which brain areas are involved in motor imagery. Twelve healthy subjects performed a motor execution and imagery task during separate fMRI and EEG measurements. fMRI results showed that(More)