Donna Seto-Young

Learn More
Opening and closing of a CFTR Cl(-) channel is controlled by PKA-mediated phosphorylation of its cytoplasmic regulatory (R) domain and by ATP binding, and likely hydrolysis, at its two nucleotide binding domains. Functional interactions between the R domain and the two nucleotide binding domains were probed by characterizing the gating of severed CFTR(More)
CFTR (cystic fibrosis transmembrane conductance regulator), the protein whose dysfunction causes cystic fibrosis, is a chloride ion channel whose gating is controlled by interactions of MgATP with CFTR's two cytoplasmic nucleotide binding domains, but only after several serines in CFTR's regulatory (R) domain have been phosphorylated by cAMP-dependent(More)
The cystic fibrosis transmembrane conductance regulator is a Cl(-) channel that belongs to the family of ATP-binding cassette proteins. The CFTR polypeptide comprises two transmembrane domains, two nucleotide binding domains (NBD1 and NBD2), and a regulatory (R) domain. Gating of the channel is controlled by kinase-mediated phosphorylation of the R domain(More)
BACKGROUND Elevated insulin, C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1 levels and decreased high molecular weight adiponectin (HMW-APN) levels have been reported in Caucasians with gestational diabetes mellitus (GDM). No similar studies have been performed in Chinese women. (More)
We have previously reported that, in human granulosa cells, thiazolidinediones rosiglitazone and pioglitazone inhibit estrogen synthesis by interfering with androgen binding to aromatase, without an effect on aromatase mRNA or protein expression. In the current paper, we explore the effects of rosiglitazone and pioglitazone on the aromatase enzyme kinetic(More)
  • 1