Donna M. Ziemer

Learn More
Restructuring of basement membranes is a hallmark of the pathology of renal cystic disorders. Here, we present findings consistent with the view that basement membrane degradation by matrix metallo-proteinases (MMPs) may contribute to abnormal basement membrane structure in polycystic kidney disease. Cells from cystic kidney tubules embedded in collagen(More)
The CFTR null mouse [cystic fibrosis (CF) mouse] has a severe intestinal phenotype that serves as a model for CF-related growth deficiency, meconium ileus, and distal intestinal obstructive syndrome. DNA microarray analysis was used to investigate gene expression in the CF mouse small intestine. Sixty-one genes exhibited a statistically significant twofold(More)
Polycystic kidney disease (PKD) is characterized by multiple renal cysts that are lined by epithelium and filled with fluid. PKD may result from one of a number of factors, either inherited or environmental. In this study, we have compared two mouse models in which PKD results from a genetic cause. In the C57BL/6J-cpk model, the mutated gene is unknown. In(More)
Proteins are sorted and packaged into regulated secretory granules at the trans Golgi network but how such granules form is poorly understood. We are studying Muclin, the major sulfated protein of the mouse pancreatic acinar cell, and what its role may be in zymogen granule formation. Muclin behaves as a peripheral membrane protein localized to the lumen of(More)
The mucinlike glycoprotein MUCLIN, one of two protein products of the CRP-ductin gene, was used to study changes in the expression of sulfated glycoconjugates during the pathogenesis of cystic fibrosis, using the cystic fibrosis transmembrane conductance regulator (CFTR) knockout mouse (CF mouse). We assessed the appearance of dilated lumina containing(More)
Gastrin regulates gastric acid secretion, believed to be primarily responsible for killing ingested microbes. We examined gastric killing of gavaged E. coli in gastrin-deficient mice, which have decreased gastric acid production. Additionally, the expression of intestinal genes involved in epithelial protection were analyzed: the mucus layer glycoprotein(More)
The pineal contains a large number of classical transmitters and neuropeptides. Some of these neurochemicals are involved in the regulation of serotonin N-acetyltransferase (NAT) activity and hence in melatonin synthesis. Synaptic ribbons present in the pineal gland also exhibit a numerical day/night rhythm parallel to that of NAT activity. There is(More)
The exocrine pancreas of the cystic fibrosis (CF) mouse (cftr(m1UNC)) is only mildly affected compared with the human disease, providing a useful model to study alterations in exocrine function. The CF mouse pancreas has approximately 50% of normal amylase levels and approximately 200% normal Muclin levels, the major sulfated glycoprotein of the pancreas.(More)
The duodenum is abnormally acidic in cystic fibrosis (CF) due to decreased bicarbonate ion secretion that is dependent on the CF gene product CFTR. In the CFTR null mouse, the acidic duodenum results in increased signaling from the intestine to the exocrine pancreas in an attempt to stimulate pancreatic bicarbonate ion secretion. Excess stimulation is(More)
It was previously found that elevated levels of matrix metalloproteinase (MMP)-2 (gelatinase A) and -9 (gelatinase B) were synthesized and secreted into the medium by cultured kidney tubules derived from cystic C57BL/6J-cpk mice. To determine whether increased synthesis and secretion occur in vivo in this mouse model of polycystic kidney disease, kidney(More)