Donna M Baldisseri

Learn More
A Ca2+ dependent conformational change in dimeric S100B(betabeta) is required for it to bind p53 and inhibit phosphorylation of this tumor suppressor in its C-terminal negative regulatory domain. A peptide derived from this region of p53 (residues 367-388) was found to have no regular structure in its native form by NMR spectroscopy, but becomes helical(More)
The solution NMR structure is reported for Ca(2+)-loaded S100B bound to a 12-residue peptide, TRTK-12, from the actin capping protein CapZ (alpha1 or alpha2 subunit, residues 265-276: TRTKIDWNKILS). This peptide was discovered by Dimlich and co-workers by screening a bacteriophage random peptide display library, and it matches exactly the consensus S100B(More)
The three-dimensional structure of Ca2+-bound rat S100B(betabeta) has been determined using data from a series of two-dimensional (2D), three-dimensional (3D), and four-dimensional (4D) nuclear magnetic resonance (NMR) experiments. Each S100beta subunit (91 residues) contains four helixes (helix 1, E2-R20; helix 2, K29-N38; helix 3, Q50-D61; and helix 4,(More)
Backbone dynamics of homodimeric apo-S100B were studied by (15)N nuclear magnetic resonance relaxation at 9.4 and 14.1 T. Longitudinal relaxation (T(1)), transverse relaxation (T(2)), and the (15)N-[(1)H] NOE were measured for 80 of 91 backbone amide groups. Internal motional parameters were determined from the relaxation data using the model-free formalism(More)
S100B(beta beta) was found to interact with the tumor suppressor protein, p53, and inhibit its PKC-dependent phosphorylation and tetramer formation [Baudier, J., Delphin, C., Grunwald, D., Khochbin, S., and Lawrence, J. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11627-11631]. Since PKC-dependent phosphorylation at the C-terminus of p53 is known to effect(More)
The binding of S100B to p53 down-regulates wild-type p53 tumor suppressor activity in cancer cells such as malignant melanoma, so a search for small molecules that bind S100B and prevent S100B-p53 complex formation was undertaken. Chemical databases were computationally searched for potential inhibitors of S100B, and 60 compounds were selected for testing(More)
In addition to binding Ca(2+), the S100 protein S100B binds Zn(2+) with relatively high affinity as confirmed using isothermal titration calorimetry (ITC; K(d) = 94 +/- 17 nM). The Zn(2+)-binding site on Ca(2+)-bound S100B was examined further using NMR spectroscopy and site-directed mutagenesis. Specifically, ITC measurements of S100B mutants (helix 1,(More)
S100B(beta beta), a member of the S100 protein family, is a Ca(2+)-binding protein with noncovalent interactions at its dimer interface. Each apo-S100 beta subunit (91 residues) has four alpha-helices and a small antiparallel beta-sheet, consistent with two predicted helix-loop-helix Ca(2+)-binding domains known as EF-hands [Amburgey et al. (1995) J.(More)
S100B(beta beta) is a dimeric Ca2+-binding protein that interacts with p53, inhibits its phosphorylation by protein kinase C (PKC) and promotes disassembly of the p53 tetramer. Likewise, a 22 residue peptide derived from the C-terminal regulatory domain of p53 has been shown to interact with S100B(beta beta) in a Ca2+-dependent manner and inhibits its(More)
Olfactory marker protein (OMP) is a ubiquitous, cytoplasmic protein found in mature olfactory receptor neurons of all vertebrates. Electrophysiological and behavioral studies demonstrate that it is a modulator of the olfactory signal transduction pathway. Here, we demonstrate that the solution structure of OMP, as determined by NMR studies, is a single(More)