Learn More
APP-BP1 binds to the amyloid precursor protein (APP) carboxyl-terminal domain. Recent work suggests that APP-BP1 participates in a novel ubiquitinylation-related pathway involving the ubiquitin-like molecule NEDD8. We show here that, in vivo in mammalian cells, APP-BP1 interacts with hUba3, its presumptive partner in the NEDD8 activation pathway, and that(More)
The recent demonstration of K+ channel dysfunction in fibroblasts from Alzheimer disease (AD) patients and past observations of Ca(2+)-mediated K+ channel modulation during memory storage suggested that AD, which is characterized by memory loss and other cognitive deficits, might also involve dysfunction of intracellular Ca2+ mobilization. Bombesin-induced(More)
Activation of protein kinase C (PKC) can mimic the biophysical effects of associative learning on neurons. Furthermore, classical conditioning of the rabbit nictitating membrane (a form of associative learning) produces translocation of PKC activity from the cytosolic to the membrane compartments of the CA1 region of the hippocampus. Evidence is provided(More)
Psychiatric disorders have clear heritable risk. Several large-scale genome-wide association studies have revealed a strong association between susceptibility for psychiatric disorders, including bipolar disease, schizophrenia and major depression, and a haplotype located in an intronic region of the L-type voltage-gated calcium channel (VGCC) subunit gene(More)
The amyloid precursor protein (APP) is cleaved by two enzymes, beta-secretase and gamma-secretase, to generate the pathological amyloid beta (Abeta) peptide. Expression of familial Alzheimer's disease (FAD) mutants of APP in primary neurons causes both intracellular accumulation of the C-terminal beta-secretase cleavage product of APP and increased(More)
Five different Alzheimer mutations of the beta-amyloid precursor protein (APP) were expressed in neurons via recombinant herpes simplex virus (HSV) vectors, and the levels of APP metabolites were quantified. The predominant intracellular accumulation product was a C-terminal fragment of APP that co-migrated with the protein product of an HSV recombinant(More)
Associative memory of the mollusc Hermissenda crassicornis, previously correlated with changes of specific K+ currents, protein phosphorylation, and increased synthesis of mRNA and specific proteins, is here shown to be accompanied by macroscopic alteration in the structure of a single identified neuron, the medial type B photoreceptor cell. Four to five(More)
Programmed cell death, or apoptosis, has been implicated in Alzheimer's disease (AD). DNA damage was assessed in primary cortical neurons infected with herpes simplex virus (HSV) vectors expressing the familial Alzheimer's disease (FAD) gene presenilin-1 (PS-1) or an FAD mutant of this gene, A246E. After infection, immunoreactivity for PS-1 was shown to be(More)
The classic neuropathological diagnostic markers for AD are amyloid plaques and neurofibrillary tangles, but their role in the etiology and progression of the disease remains incompletely defined. Research over the last decade has revealed that cell cycle abnormalities also represent a major neuropathological feature of AD. These abnormalities appear very(More)
BACKGROUND The beta-amyloid precursor protein (APP) is sequentially cleaved by the beta- and then gamma-secretase to generate the amyloid beta-peptides Abeta40 and Abeta42. Increased Abeta42/Abeta40 ratios trigger amyloid plaque formations in Alzheimer's disease (AD). APP binds to APP-BP1, but the biological consequence is not well understood. RESULTS We(More)