Learn More
The problem of feature selection has aroused considerable research interests in the past few years. Traditional learning based feature selection methods separate embedding learning and feature ranking. In this paper, we introduce a novel unsuper-vised feature selection approach via Joint Embedding Learning and Sparse Regression (JELSR). Instead of simply(More)
The problem of image classification has aroused considerable research interest in the field of image processing. Traditional methods often convert an image to a vector and then use a vector-based classifier. In this paper, a novel multiple rank regression model (MRR) for matrix data classification is proposed. Unlike traditional vector-based methods, we(More)
Feature selection has aroused considerable research interests during the last few decades. Traditional learning-based feature selection methods separate embedding learning and feature ranking. In this paper, we propose a novel unsupervised feature selection framework, termed as the joint embedding learning and sparse regression (JELSR), in which the(More)
BACKGROUND We present a novel and systematic approach to analyze temporal microarray data. The approach includes normalization, clustering and network analysis of genes. METHODOLOGY Genes are normalized using an error model based uniform normalization method aimed at identifying and estimating the sources of variations. The model minimizes the correlation(More)
Matrices, or more generally, multi-way arrays (tensors) are common forms of data that are encountered in a wide range of real applications. How to classify this kind of data is an important research topic for both pattern recognition and machine learning. In this paper, by analyzing the relationship between two famous traditional classification approaches,(More)
The shapes of if-part fuzzy sets affect the approximating capability of fuzzy systems. In this paper, the fuzzy systems with the kernel-shaped if-part fuzzy sets are built directly from the training data. It is proved that these fuzzy systems are universal approximators and their uniform approximation rates can be estimated in the single-input–single-output(More)
The recent years have witnessed a surge of interests of learning high-dimensional correspondence, which is important for both machine learning and neural computation community. Manifold learning–based researches have been considered as one of the most promising directions. In this paper, by analyzing traditional methods, we summarized a new framework for(More)
In many real applications of machine learning and data mining, we are often confronted with high-dimensional data. How to cluster high-dimensional data is still a challenging problem due to the curse of dimensionality. In this paper, we try to address this problem using joint dimensionality reduction and clustering. Different from traditional approaches(More)