Learn More
In direct drive ICF, optical zooming is an effective way to mitigate cross-beam energy transfer and increase the hydrodynamic efficiency, by reducing the spot size of the laser beams while target compressing. In this paper, a novel optical zooming scheme is proposed, which employs a focusing grating to focus the broadband laser pulse, changing the spot size(More)
In this talk, we propose and demonstrate the process-oriented adaptive optics (AO) wavefront control method, for optimizing the beam quality in the multi-pass amplifiers. Different from the conventional target-oriented wavefront control approach, the novel method divides the aberration correction process into several steps, to optimize the wavefront quality(More)
Through analysis of near-field beam profiles, we propose a method using Shannon entropy to assess the development of small-scale self-focusing during laser propagation and amplification in high-power laser systems. In this method, the entropy curve that corresponds to increasing B integral displays an evident turning point at which small-scale self-focusing(More)
For thermal deformable mirrors (DMs), the thermal field control is important because it will decide aberration correction effects. In order to better manipulate the thermal fields, a simple water convection system is proposed. The water convection system, which can be applied in thermal field bimetal DMs, shows effective thermal fields and(More)
Recent progress in strong-field physics has stimulated the quest for intense mid-infrared ultrashort light sources. Optical parametric amplification (OPA) is one promising method to build up such sources, however, its development significantly relies on the availability of suitable nonlinear crystals. Here, we introduce a positive uniaxial crystal(More)
  • 1