Dongwook Kim

Learn More
Although soluble sugar levels affect many aspects of plant development and physiology, little is known about the mechanisms by which plants respond to sugar. Here we report the isolation of 13 sugar-insensitive (sis) mutants of Arabidopsis that, unlike wild-type plants, are able to form expanded cotyledons and true leaves when germinated on media containing(More)
Soluble sugar levels affect a diverse array of plant developmental processes. For example, exposure to high levels of glucose or sucrose inhibits early seedling development of Arabidopsis thaliana (L.) Heynh. Media-shift experiments indicate that Arabidopsis seedlings lose their sensitivity to the inhibitory effects of high sugar levels on early development(More)
As more and more data are generated in an electronic format, the necessity of data recovery service became larger and the development of more efficient data backup and recovery technology has been an important issue during the past decade. While lots of effective backup and recovery technologies, including data dedeplication and incremental backup, have(More)
Despite extensive biochemical analyses, the biological function(s) of plant beta-amylases remains unclear. The fact that beta-amylases degrade starch in vitro suggests that they may play a role in starch metabolism in vivo. beta-Amylases have also been suggested to prevent the accumulation of highly polymerized polysaccharides that might otherwise impede(More)
Previous studies have demonstrated that the major storage protein RNAs found in the rice endosperm are transported as particles via actomyosin to specific subdomains of the cortical endoplasmic reticulum. In this study, we examined the potential role of OsTudor-SN, a major cytoskeletal-associated RNA binding protein, in RNA transport and localization.(More)
We propose an optimal modulation and coding scheme (MCS) selection criterion for maximizing user throughput in cellular networks. The proposed criterion adopts both the Chase combining and incremental redundancy based hybrid automatic repeat request (HARQ) mechanisms and it selects an MCS level that maximizes the expected throughput which is estimated by(More)
Organically complexed iron species can play a significant role in many subsurface redox processes, including reactions that contribute to the transformation and degradation of soil and aquatic contaminants. Experimental results demonstrate that complexation of Fe(II) by catechol- and thiol-containing organic ligands leads to formation of highly reactive(More)
Next-generation cellular networks are expected to support various multimedia services over IP networks with high spectral efficiency. In these networks, hotspot cells can occur when available wireless resources at some location are not sufficient to sustain the needs of users. The hotspot cell can potentially lead to blocked or dropped calls, which can(More)
Complexation of iron(ll) by catechol and thiol ligands leads to the formation of aqueous species that are capable of reducing substituted nitroaromatic compounds (NACs) to the corresponding anilines. No reactions of NACs are observed in FelI-only or ligand-only solutions. In solutions containing FeII and tiron, a model catechol, rates of NAC reduction are(More)
Lipid-based oil-filled nanoparticles (NPs) with a high concentration of surface-chelated nickel (Ni-NPs) were successfully prepared using a Brij 78-NTA-Ni conjugate synthesized with Brij 78 (Polyoxyethylene (20) stearyl ether) and nitrilotriacetic acid (NTA). The facile incorporation of the Brij 78-NTA-Ni conjugate into the NP formulation allowed up to 90%(More)