Dongsheng Zhou

Learn More
The genetic diversity of Yersinia pestis, the etiologic agent of plague, is extremely limited because of its recent origin coupled with a slow clock rate. Here we identified 2,326 SNPs from 133 genomes of Y. pestis strains that were isolated in China and elsewhere. These SNPs define the genealogy of Y. pestis since its most recent common ancestor. All but(More)
The ferric uptake regulator (Fur) is a predominant bacterial regulator controlling the iron assimilation functions in response to iron availability. Our previous microarray analysis on Yersinia pestis defined the iron-Fur modulon. In the present work, we reannotated the iron assimilation genes in Y. pestis, and the resulting genes in complementation with(More)
Yersinia pestis, the etiologic agent of plague, must acclimatize itself to temperature shifts between the temperature (26 C) for flea blockage and the body temperature (37 C) of warm-blooded hosts during its life cycle. Here a whole-genome DNA microarray was used to investigate transcriptional regulation upon the upshift of growth temperature from 26 to 37(More)
A whole-genome DNA microarray was constructed to dissect expression profiles of Vibrio parahaemolyticus in response to a sudden temperature downshift from 37 to 10 degrees C. The mRNA level of each gene at each of three time points (20, 40 and 60 min after temperature downshift) was compared with that just before cold treatment. Clustering analysis of(More)
Typical Klebsiella pneumoniae is an opportunistic pathogen, which mostly affects those with weakened immune systems and tends to cause nosocomial infections. A subset of hypervirulent K. pneumoniae serotypes with elevated production of capsule polysaccharide can affect previously healthy persons and cause life-threatening community-acquired infections, such(More)
Yersinia pestis has been historically divided into three biovars: antiqua, mediaevalis, and orientalis. On the basis of this study, strains from Microtus-related plague foci are proposed to constitute a new biovar, microtus. Based on the ability to ferment glycerol and arabinose and to reduce nitrate, Y. pestis strains can be assigned to one of four(More)
Genomics provides an unprecedented opportunity to probe in minute detail into the genomes of the world's most deadly pathogenic bacteria- Yersinia pestis. Here we report the complete genome sequence of Y. pestis strain 91001, a human-avirulent strain isolated from the rodent Brandt's vole-Microtus brandti. The genome of strain 91001 consists of one(More)
BACKGROUND Vibrio parahaemolyticus is a leading cause of infectious diarrhea and enterogastritis via the fecal-oral route. V. harveyi is a pathogen of fishes and invertebrates, and has been used as a model for quorum sensing (QS) studies. LuxR is the master QS regulator (MQSR) of V. harveyi, and LuxR-dependent expression of its own gene, qrr2-4 and aphA(More)
Using DNA microarray analysis, mRNA levels from wild-type Yersinia pestis cells treated with the iron chelator 2,2'-dipyridyl were compared with those supplemented with excessive iron, and subsequent to this, gene expression in the fur mutant was compared with that in the wild-type strain under iron rich conditions. The microarray analysis revealed many(More)
A collection of 174 global isolates of Vibrio parahaemolyticus were analyzed by multilocus sequence typing (MLST) on the basis of ten conserved genes. The results showed a high level of nucleotide and allelic diversity with the evidence of purifying selection and of frequent recombination. Recombination played a much greater role than mutation in generating(More)