Dongliang Cheng

Learn More
Color constancy is a well-studied topic in color vision. Methods are generally categorized as (1) low-level statistical methods, (2) gamut-based methods, and (3) learning-based methods. In this work, we distinguish methods depending on whether they work directly from color values (i.e., color domain) or from values obtained from the image's spatial(More)
Illumination estimation is the process of determining the chromaticity of the illumination in an imaged scene in order to remove undesirable color casts through white-balancing. While computational color constancy is a well-studied topic in computer vision, it remains challenging due to the ill-posed nature of the problem. One class of techniques relies on(More)
Variation in terrestrial net primary production (NPP) with climate is thought to originate from a direct influence of temperature and precipitation on plant metabolism. However, variation in NPP may also result from an indirect influence of climate by means of plant age, stand biomass, growing season length and local adaptation. To identify the relative(More)
Allometric biomass allocation theory predicts that leaf biomass (M L ) scaled isometrically with stem (M S ) and root (M R ) biomass, and thus above-ground biomass (leaf and stem) (M A ) and root (M R ) scaled nearly isometrically with below-ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that(More)
A limitation in color constancy research is the inability to establish ground truth colors for evaluating corrected images. Many existing datasets contain images of scenes with a color chart included, however, only the chart's neutral colors (grayscale patches) are used to provide the ground truth for illumination estimation and correction. This is because(More)
BACKGROUND AND AIMS Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation(More)
This paper examines the problem of white-balance correction when a scene contains two illuminations. This is a two step process: 1) estimate the two illuminants, and 2) correct the image. Existing methods attempt to estimate a spatially varying illumination map, however, results are error prone and the resulting illumination maps are too lowresolution to be(More)
PREMISE OF THE STUDY Empirical studies and theory indicate that respiration rates (R) of small plants scale nearly isometrically with both leaf biomass (ML) and total plant biomass (MT). These predictions are based on angiosperm species and apply only across a small range of body mass. Whether these relationships hold true for different plants, such as(More)
Metabolic scaling theory (MST) posits that the scaling exponents among plant height H, diameter D, and biomass M will covary across phyletically diverse species. However, the relationships between scaling exponents and normalization constants remain unclear. Therefore, we developed a predictive model for the covariation of H, D, and stem volume V scaling(More)
Simultaneous and accurate measurements of whole-plant instantaneous carbon-use efficiency (ICUE) and annual total carbon-use efficiency (TCUE) are difficult to make, especially for trees. One usually estimates ICUE based on the net photosynthetic rate or the assumed proportional relationship between growth efficiency and ICUE. However, thus far, protocols(More)