Learn More
BAP31 is an endoplasmic reticulum protein-sorting factor that associates with newly synthesized integral membrane proteins and controls their fate (i.e., egress, retention, survival, or degradation). BAP31 is itself an integral membrane protein and a constituent of several large protein complexes. Here, we show that a part of the BAP31 population interacts(More)
Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.2,(More)
BACKGROUND Many genetic diseases are due to defects in protein trafficking where the mutant protein is recognized by the quality control systems, retained in the endoplasmic reticulum (ER), and degraded by the proteasome. In many cases, the mutant protein retains function if it can be trafficked to its proper cellular location. We have identified(More)
Cytokinesis requires activation of the GTPase RhoA. ECT-2, the exchange factor responsible for RhoA activation, is regulated to ensure spatiotemporal control of contractile ring assembly. Centralspindlin, composed of the Rho family GTPase-activating protein (RhoGAP) MgcRacGAP/CYK-4 and the kinesin MKLP1/ZEN-4, is known to activate ECT-2, but the underlying(More)
Most cases of cystic fibrosis (CF) are caused by the deletion of a single phenylalanine residue at position 508 of the cystic fibrosis transmembrane conductance regulator (CFTR). The mutant F508del-CFTR is retained in the endoplasmic reticulum and degraded, but can be induced by low temperature incubation (29°C) to traffic to the plasma membrane where it(More)
To evaluate the telomere/telomerase system and its clinical significance in immune thrombocytopenia (ITP) patients. A total of 237 ITP patients, 20 SLE patients and 200 age-and sex-matched healthy controls were included in this study. CD4+, CD8+ and CD19+ lymphocytes were purified by magnetic beads sorting from peripheral blood of 37 active chronic ITP(More)
BACKGROUND Increasing evidence shows that whole genomes of eukaryotes are almost entirely transcribed into both protein coding genes and an enormous number of non-protein-coding RNAs (ncRNAs). Therefore, revealing the underlying regulatory mechanisms of transcripts becomes imperative. However, for a complete understanding of transcriptional regulatory(More)
The TAM kinase (Tyro3, Axl, Mer) and its two ligands (Gas6 and protein S) have been shown to play an important regulatory role in the innate immune response. The present study aimed to investigate whether the tag single-nucleotide polymorphisms (tag SNPs) of these 5 protein-coding genes are associated with Behçet's disease (BD). A two-stage association(More)
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase(More)