Donglai Liu

Learn More
The HIV-1 accessory factor Vif is necessary for efficient viral infection in non-permissive cells. Vif antagonizes the antiviral activity of human cytidine deaminase APOBEC3 proteins that confer the non-permissive phenotype by tethering them (APOBEC3DE/3F/3G) to the Vif-CBF-β-ElonginB-ElonginC-Cullin5-Rbx (Vif-CBF-β-EloB-EloC-Cul5-Rbx) E3 complex to induce(More)
The HIV-1 viral infectivity factor (Vif) protein is essential for viral replication. Vif recruits cellular ElonginB/C-Cullin5 E3 ubiquitin ligase to target the host antiviral protein APOBEC3G (A3G) for proteasomal degradation. In the absence of Vif, A3G is packaged into budding HIV-1 virions and introduces multiple mutations in the newly synthesized(More)
Tetherin/BST-2/CD317 inhibits HIV-1 release from infected cells, but the viral Vpu protein efficiently antagonizes this antiviral activity through direct interaction between the transmembrane (TM) domains of each protein. Here, we demonstrated that overexpression of an inactive tetherin delGPI mutant, the TM domain of which could competitively block Vpu(More)
Artificial recombinants can be generated during PCR when more than two genetically distinct templates coexist in a single PCR reaction. These recombinant amplicons can lead to the false interpretation of genetic diversity and incorrect identification of biological phenotypes that do not exist in vivo. We investigated how recombination between 2 or 35(More)
BST-2 blocks the particle release of various enveloped viruses including HIV-1, and this antiviral activity is dependent on the topological arrangement of its four structural domains. Several functions of the cytoplasmic tail (CT) of BST-2 have been previously discussed, but the exact role of this domain remains to be clearly defined. In this study, we(More)
Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the(More)
Rbx1 and Rbx2 are essential components of Cullin-RING E3 Ligases. Vif is generally believed to preferentially recruit the Cul5-Rbx2 module to induce proteasomal degradation of antiretroviral enzyme APOBEC3G, although some investigators have found that the Cul5-Rbx1 module is recruited. Here, to investigate the function of the two Rbx proteins in the(More)
Tetherin/BST-2/CD317 inhibits HIV-1 release from infected cells, while HIV-1 Vpu efficiently antagonizes tetherin based on intermolecular interactions between the transmembrane domains of each protein. In this study, we successfully partially purified His-tagged tetherin with a glycophosphatidylinositol deletion (delGPI) and His-tagged full-length Vpu from(More)
Recombination of diverse natural evolved domains within a superfamily offers greater opportunity for enzyme function leaps. How to recombine protein modules from distant parents with less disruption in cross-interfaces is a challenging issue. Here, we identified the existence of a key motif, the sequence VVSVN(D)YR, within a structural motif ψ loop in the(More)
The suppression of viral loads and identification of selection signatures in non-human primates after challenge are indicators for effective human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) vaccines. To mimic the protective immunity elicited by attenuated SIV vaccines, we developed an integration-defective SIV (idSIV) vaccine by(More)