Learn More
PICALM is a highly validated genetic risk factor for Alzheimer's disease (AD). We found that reduced expression of PICALM in AD and murine brain endothelium correlated with amyloid-β (Aβ) pathology and cognitive impairment. Moreover, Picalm deficiency diminished Aβ clearance across the murine blood-brain barrier (BBB) and accelerated Aβ pathology in a(More)
Mitochondrial dysfunction has been implicated in the pathophysiology of Alzheimer's disease (AD) brains. To unravel the mechanism(s) underlying this dysfunction, we demonstrate that phospholipases A2 (PLA2s), namely the cytosolic and the calcium-independent PLA2s (cPLA2 and iPLA2), are key enzymes mediating oligomeric amyloid-beta peptide(More)
The anticoagulant factor protein S (PS) has direct cellular activities. Lack of PS in mice causes lethal coagulopathy, ischemic/thrombotic injuries, vascular dysgenesis, and blood-brain barrier (BBB) disruption with intracerebral hemorrhages. Thus, we hypothesized that PS maintains and/or enhances the BBB integrity. Using a BBB model with human brain(More)
U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic(More)
Excess hydrogen peroxide (H2O2) is produced in the pathogenesis of brain injuries and neurodegenerative diseases. H2O2 may damage cells through direct oxidation of lipids, proteins and DNA or it can act as a signaling molecule to trigger intracellular pathways leading to cell death. In this study, H2O2 caused plasma membranes of primary astrocytes to become(More)
ROS (reactive oxygen species) overproduction is an important underlying factor for the activation of astrocytes in various neuropathological conditions. In the present study, we examined ROS production in astrocytes and downstream effects leading to changes in the signalling cascade, morphology and membrane dynamics using menadione, a redox-active compound(More)
Mitochondrial dysfunction has been implicated in the pathophysiology of Alzheimer's disease (AD) brains. To unravel the mechanism(s) underlying this dysfunction, we demonstrate that phospholipases A 2 (PLA 2 s), namely the cytosolic and the calcium-independent PLA 2 s (cPLA 2 and iPLA 2), are key enzymes mediating oligomeric amyloid-␤ peptide (A␤ 1–(More)
Oligomeric amyloid-beta peptide (Abeta) is known to induce cytotoxic effects and to damage cell functions in Alzheimer's disease. However, mechanisms underlying the effects of Abeta on cell membranes have yet to be fully elucidated. In this study, Abeta 1-42 (Abeta(42)) was shown to cause a temporal biphasic change in membranes of astrocytic DITNC cells(More)
BACKGROUND Small caliber vascular prostheses are not clinically available because synthetic vascular prostheses lack endothelial cells which modulate platelet activation, leukocyte adhesion, thrombosis, and the regulation of vasomotor tone by the production of vasoactive substances. We developed a novel method to create scaffold-free tubular tissue from(More)
Considerable studies indicate huperzine A is a promising natural product to suppress neuronal damages induced by β-amyloid (Aβ), a key pathogenic event in the Alzheimer's disease (AD). As an extension, the present study for the first time explored whether the beneficial profiles of huperzine A against oligomeric Aβ(42) induced neurotoxicity are associated(More)