Learn More
NIH-3T3 cells, which are resistant to reovirus infection, became susceptible when transformed with activated Sos or Ras. Restriction of reovirus proliferation in untransformed NIH-3T3 cells was not at the level of viral gene transcription, but rather at the level of viral protein synthesis. An analysis of cell lysates revealed that a 65 kDa protein was(More)
Data from limited autopsies of human patients demonstrate that pathological changes in EV71-infected fatal cases are principally characterized by clear inflammatory lesions in different parts of the CNS; nearly identical changes were found in murine, cynomolgus and rhesus monkey studies which provide evidence of using animal models to investigate the(More)
Reovirus binds to multiple sialoglycoproteins on the host cell surface. In an attempt to probe additional specific determinants that dictate host cell susceptibility to reovirus infection, we found that two mouse cell lines (NR6 and B82) previously shown to express no endogenous epidermal growth factor (EGF) receptors were relatively resistant to reovirus(More)
hUC-MSCs hold great promise in vitro neuronal differentiation and therapy for neurodegenerative disorders including Parkinson's disease. Recent studies provided that Lmx1α play an important role in the midbrain dopamine cells differentiation. Neurturin is desired candidate gene for providing a neuroprotective to DA neurons. In this study, we investigated a(More)
A conformational change was detected in reovirus upon its attachment to mouse L fibroblasts. Specifically, the capsid proteins of cell-bound virions became more resistant to pepsin digestion. Similar observations were made using glutaraldehyde-fixed cells or plasma membranes instead of live cells, indicating that virus internalization was not necessary for(More)
Enterovirus 71 (EV71) is a major pathogen that causes hand-foot-mouth disease (HFMD). Our previous studies have demonstrated that the complete process of pathogenesis, which may include tissue damage induced by host inflammatory responses and direct tissue damage caused by viral infection, can be observed in the central nervous system (CNS) of animals(More)
Although clinical trials for the enterovirus type 71 (EV71) inactivated vaccine have been progressing, the potential mechanism of EV71 infection and its associated pathogenesis are not well-characterized in terms of comprehensive analysis of the induced immune response, which is generally recognized as an important indicator of the safety of vaccines. To(More)
Preliminary studies of the major pathogen enterovirus 71 (EV71), a member of the Picornaviridae family, have suggested that EV71 may be a major cause of fatal hand, foot and mouth disease cases. Currently, the role of the pathological changes induced by EV71 infection in the immunopathogenic response remains unclear. Our study focused on the interaction(More)
The demonstration that alpha-sialic acid is the minimal determinant recognized by human reovirus is compatible with the finding that this virus binds to multiple sialoglycoproteins on the host cell surface. However, the identities of these proteins have remained unknown. By applying detergent-solubilized plasma membranes from the human epidermoid carcinoma(More)
Enterovirus 71 (EV71) is the major pathogen responsible for fatal hand, foot and mouth disease (HFMD). Our previous work reported on an EV71-infected rhesus monkey infant model that presented with histo-pathologic changes of the central nervous system (CNS) and lungs. This study is focused on the correlated modulation of gene expression in the peripheral(More)
  • 1