Learn More
This summary article presents an overview of the molecular relationships among the voltage-gated potassium channels and a standard nomenclature for them, which is derived from the IUPHAR Compendium of Voltage-Gated Ion Channels. The complete Compendium, including data tables for each member of the potassium channel family can be found at(More)
Dorsal root ganglion (DRG) neurons express mRNAs for many two-pore domain K(+) (K(2P)) channels that behave as background K(+) channels. To identify functional background K(+) channels in DRG neurons, we examined the properties of single-channel openings from cell-attached and inside-out patches from the cell bodies of DRG neurons. We found seven types of(More)
Cerebellar granule neurons express a standing outward (background) K+ current (I(K,SO)) that regulates the resting membrane potential and cell excitability. As several tandem-pore (2P) K+ channel mRNAs are highly expressed in cerebellar granule cells, we studied whether, and which, 2P K+ channels contribute to I(K,SO). I(K,SO) was highly sensitive to(More)
TASK-1 and TASK-3 are functional members of the tandem-pore K+ (K2P) channel family, and mRNAs for both channels are expressed together in many brain regions. Although TASK-1 and TASK-3 subunits are able to form heteromers when their complementary RNAs are injected into oocytes, whether functional heteromers are present in the native tissue is not known.(More)
Magnocellular neurosecretory cells (MNCs) were isolated from the supraoptic nucleus of rat hypothalamus, and properties of K(+) channels that may regulate the resting membrane potential and the excitability of MNCs were studied. MNCs showed large transient outward currents, typical of vasopressin- and oxytocin-releasing neurons. K(+) channels in MNCs were(More)
TREK-1, TREK-2 and TRAAK are members of the two-pore domain K+ (K2P) channel family and are activated by membrane stretch and free fatty acids. TREK-1 has been shown to be sensitive to temperature in expression systems. We studied the temperature-sensitivity of TREK-2 and TRAAK in COS-7 cells and in neuronal cells. In transfected COS-7 cells, TREK-2 and(More)
Abundantly expressed in pain-sensing neurons, TRPV1, TRPA1 and TRPM8 are major cellular sensors of thermal, chemical and mechanical stimuli. The function of these ion channels has been attributed to their selective permeation of small cations (e.g., Ca2+, Na+ and K+), and the ion selectivity has been assumed to be an invariant fingerprint to a given(More)
Background K+ channels whose subunit contains four transmembrane segments and two pore-forming domains (4TM/2P) have been cloned recently. We studied whether 4TM/2P K+ channels are functionally expressed in astrocytes that are known to have a large background (resting) K+ conductance and a large resting membrane potential. Reverse transcriptase-PCR analysis(More)
Pungent chemicals such as allyl isothiocyanate (AITC), cinnamaldehyde, and allicin, produce nociceptive sensation by directly activating transient receptor potential A1 (TRPA1) expressed in sensory afferent neurons. In this study, we found that pungent chemicals added to the pipette or bath solution easily activated TRPA1 in cell-attached patches but failed(More)
Searching the DNA database has led to the identification of a class of K+ channels now referred to as two-pore or tandem-pore domain K+ (K2P) channels. The K2P channel is structurally unique in that each subunit possesses two pore-forming domains and four transmembrane segments. In mammals, sixteen K2P channel genes have been identified, and their mRNA(More)