Learn More
Organismal aging is influenced by a multitude of intrinsic and extrinsic factors, and heterochromatin loss has been proposed to be one of the causes of aging. However, the role of heterochromatin in animal aging has been controversial. Here we show that heterochromatin formation prolongs lifespan and controls ribosomal RNA synthesis in Drosophila. Animals(More)
STAT (Signal transducer and activator of transcription) is a potent transcription factor and its aberrant activation by phosphorylation is associated with human cancers. We have shown previously that overactivation of JAK, which phosphorylates STAT, disrupts heterochromatin formation globally in Drosophila melanogaster. However, it remains unclear how this(More)
We present what we believe to be a novel, simple, and compact axicon-based resonator Nd:YAG laser in which a nanosecond pulsed Bessel-Gauss beam is generated directly for the first time. Using the theory of the Bessel-Gauss beam, theoretical analysis and numerical simulation are consistent with the experimental results.
The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK) signaling, and its aberrant activation has been implicated in multiple human cancers. However, the precise molecular mechanism of Raf activation, especially for B-Raf, remains unresolved. By genetic and biochemical studies, we demonstrate that phosphorylation of tyrosine 510 is(More)
RNA interference (RNAi) is a eukaryotic gene-silencing system. Although the biochemistry of RNAi is relatively well defined, how this pathway is regulated remains incompletely understood. To identify genes involved in regulating the RNAi pathway, we screened for genetic mutations in Drosophila that alter the efficiency of RNAi. We identified the Drosophila(More)
A Bayer pattern image codec method based on Wyner-Ziv structure is proposed in this paper. At the encoder the pixel of Bayer pattern image is converted into four component images by means of structural separation and transformation. Three of them are transformed into frequency domain by the discrete cosine transform. We extended the Lloyd iterative(More)
Two previously identified human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) mutants, Q151N and V148I, are known to have reduced dNTP binding affinity but possess wild-type chemical catalysis rates. Structural modeling based on the crystal structure of the HIV-1 RT ternary complex with dTTP proposes that Q151N loses the interaction with(More)
A novel organic template-free strategy for generating mesoporosity in Y zeolites is reported. It is revealed that Fe(3+) functioned as unstable sites in the Fe-NaY zeolite, which promotes deferrization-dealumination, leading to enhanced formation of intra-crystalline mesopores as well as desirable interconnectivity. The mesopore-enriched zeolite exhibits a(More)