Learn More
In this paper, we propose a novel approach to extract primary object segments in videos in the 'object proposal' domain. The extracted primary object regions are then used to build object models for optimized video segmentation. The proposed approach has several contributions: First, a novel layered Directed Acyclic Graph (DAG) based framework is presented(More)
— We address the problem of recognizing sequences of human interaction patterns in meetings, with the goal of structuring them in semantic terms. The investigated patterns are inherently group-based (defined by the individual activities of meeting participants, and their interplay), and multimodal (as captured by cameras and microphones). By defining a(More)
Frequent itemset mining (FIM) is a useful tool for discovering frequently co-occurrent items. Since its inception, a number of significant FIM algorithms have been developed to speed up mining performance. Unfortunately, when the dataset size is huge, both the memory use and computational cost can still be prohibitively expensive. In this work, we propose(More)
The employed dictionary plays an important role in sparse representation or sparse coding based image reconstruction and classification, while learning dictionaries from the training data has led to state-of-the-art results in image classification tasks. However, many dictionary learning models exploit only the discriminative information in either the(More)
Shot is often used as basic unit for both analyzing and indexing video. In this paper, we present an algorithm for automatic shot detection. In our algorithm, we use a 'flash model' and a 'cut model' to deal with the false detection due to flashing lights. A technique for determining the threshold that uses the local window based method combined with(More)
This paper investigates the recognition of group actions in meetings. A framework is employed in which group actions result from the interactions of the individual participants. The group actions are modeled using different HMM-based approaches, where the observations are provided by a set of audiovisual features monitoring the actions of individuals.(More)
Face representation based on Gabor features has attracted much attention and achieved great success in face recognition area for the advantages of the Gabor features. However, Gabor features currently adopted by most systems are redundant and too high dimensional. In this paper, we propose a face recognition method using AdaBoosted Gabor features, which are(More)
Rapid growth in the amount of data available on social networking sites has made information retrieval increasingly challenging for users. In this paper, we propose a collaborative filtering method, Combinational Collaborative Filtering (CCF), to perform personalized community recommendations by considering multiple types of co-occurrences in social data at(More)
We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the application of traditional supervised model-based approaches. We propose a semi-supervised adapted Hidden Markov Model (HMM) framework, in which usual event models are first learned from(More)