Learn More
Most current speech recognition systems use hidden Markov models (HMMs) to deal with the temporal variability of speech and Gaussian mixture models (GMMs) to determine how well each state of each HMM fits a frame or a short window of frames of coefficients that represents the acoustic input. An alternative way to evaluate the fit is to use a feed-forward(More)
We propose a novel context-dependent (CD) model for large-vocabulary speech recognition (LVSR) that leverages recent advances in using deep belief networks for phone recognition. We describe a pre-trained deep neural network hidden Markov model (DNN-HMM) hybrid architecture that trains the DNN to produce a distribution over senones (tied triphone states) as(More)
Most current speech recognition systems use hidden Markov models (HMMs) to deal with the temporal variability of speech and Gaussian mixture models to determine how well each state of each HMM fits a frame or a short window of frames of coefficients that represents the acoustic input. An alternative way to evaluate the fit is to use a feedforward neural(More)
We apply the recently proposed Context-Dependent DeepNeural-Network HMMs, or CD-DNN-HMMs, to speech-to-text transcription. For single-pass speaker-independent recognition on the RT03S Fisher portion of phone-call transcription benchmark (Switchboard), the word-error rate is reduced from 27.4%, obtained by discriminatively trained Gaussian-mixture HMMs, to(More)
We investigate the potential of Context-Dependent Deep-Neural-Network HMMs, or CD-DNN-HMMs, from a feature-engineering perspective. Recently, we had shown that for speaker-independent transcription of phone calls (NIST RT03S Fisher data), CD-DNN-HMMs reduced the word error rate by as much as one third—from 27.4%, obtained by discriminatively trained(More)
Recently, a new acoustic model based on deep neural networks (DNN) has been introduced. While the DNN has generated significant improvements over GMM-based systems on several tasks, there has been no evaluation of the robustness of such systems to environmental distortion. In this paper, we investigate the noise robustness of DNN-based acoustic models and(More)
This book is aimed to provide an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks. The application areas are chosen with the following three criteria: 1) expertise or knowledge of the authors; 2) the application areas that have already been transformed by the successful use of deep(More)
In the deep neural network (DNN), the hidden layers can be considered as increasingly complex feature transformations and the final softmax layer as a log-linear classifier making use of the most abstract features computed in the hidden layers. While the loglinear classifier should be different for different languages, the feature transformations can be(More)
Recently, the hybrid deep neural network (DNN)- hidden Markov model (HMM) has been shown to significantly improve speech recognition performance over the conventional Gaussian mixture model (GMM)-HMM. The performance improvement is partially attributed to the ability of the DNN to model complex correlations in speech features. In this paper, we show that(More)
In this paper, we present our recent development of a modeldomain environment-robust adaptation algorithm, which demonstrates high performance in the standard Aurora 2 speech recognition task. The algorithm consists of two main steps. First, the noise and channel parameters are estimated using a nonlinear environment distortion model in the cepstral domain,(More)