Learn More
Perovskite solar cells (PeSCs) have been considered one of the competitive next generation power sources. To date, light-to-electric conversion efficiencies have rapidly increased to over 10%, and further improvements are expected. However, the poor device reproducibility of PeSCs ascribed to their inhomogeneously covered film morphology has hindered their(More)
A one-step, template-free synthetic method for preparing polymeric microcapsules with iron oxide (γ-Fe 2 O 3) magnetic nanoparticles (MPs) embedded in the polymer shell is reported. Using a simple emulsification of the multiphase mixture containing liquid prepolymer and MPs in chloroform solution, double emulsions comprising a chloroform core and(More)
Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded(More)
In this study, we investigated chemically exfoliated two-dimensional (2-D) nanoflakes of molybdenum disulfide (MoS2) as charge-storing elements for use in organic multilevel memory devices (of the printed/flexible non-volatile type) based on organic field-effect transistors (OFETs) containing poly(3-hexylthiophene) (P3HT). The metallic MoS2 nanoflakes were(More)
We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the(More)
Hybrid structures of silicon with organic-inorganic perovskites are proposed for optically controllable switching of terahertz (THz) waves over a broad spectral range from 0.2 to 2THz. A 532-nm external laser was utilized to generate photoexcited free carriers at the devices and consequentially to control the terahertz amplitude modulation, obtaining a(More)
Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We(More)
Colloidal lithography was used to make a novel array (2-D) of micro-rings, dots, and interconnected-honeycomb structures. These geometries are controlled using the curing temperature-dependent rheological properties of the siloxane elastomer precursor. Serratia marcescens was patterned on the interconnected honeycomb microstructure demonstrating a potential(More)
Efficient charge injection is critical for flexible organic electronic devices such as organic light-emitting diodes (OLEDs) and field-effect transistors (OFETs). Here, we investigated conjugated polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) as solution-processable charge-injection layers in ambipolar organic field-effect(More)
A novel donor-acceptor-type polymer with a low band-gap that alternates electron-rich thienylenevinylene groups with electron-deficient diketopyrrolopyrrole (DPP) units (PETVTDPP) has been synthesized by Pd-catalyzed Stille cross-coupling polymerization. The polymer shows a broad absorption band of wavelengths that range from 330 to 900 nm, and a low(More)