Dong-Wook Han

Learn More
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI) contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional(More)
Incomplete reprogramming of the donor cell nucleus after nuclear transfer (NT) probably leads to the abnormal expression of developmentally important genes. This may be responsible for the low efficiency of cloned animal production. Insulin-like growth factor 2 (IGF2) and IGF2 receptor (IGF2R) are imprinted genes that play important roles in preimplantation(More)
BACKGROUND Electrospinning is a simple and effective method for fabricating micro- and nanofiber matrices. Electrospun fibre matrices have numerous advantages for use as tissue engineering scaffolds, such as high surface area-to-volume ratio, mass production capability and structural similarity to the natural extracellular matrix (ECM). Therefore,(More)
Recently, many nanomedical studies have been focused on magnetic nanoparticles (MNPs) because MNPs possess attractive properties for potential uses in imaging, drug delivery, and theranostics. MNPs must have optimized size as well as functionalized surface for such applications. However, careful cytotoxicity and genotoxicity assessments to ensure the(More)
Polyphenolic compounds are well known as a functional food with various bioactivities. However, less attention has been paid to the effect of phenolic antioxidants on the preservation of blood vessels. In this study, the possible effects of green tea polyphenolic compounds (GTPCs) on the longterm preservation of the human saphenous vein (HSV) were(More)
The potential protective roles played by green tea polyphenol (GTP) against the injurious effects of reactive oxygen species in human microvascular endothelial cells (HUMVECs) were investigated. Oxidative stress was induced in cultured HUMVECs, either by adding 10 mM H2O2 or by the action of 10 U/l xanthine oxidase (XO) in the presence of xanthine (250(More)
We investigated the hibernation effect of epigallocatechin-3-O-gallate (EGCG) on neonatal human tarsal fibroblasts (nHTFs) by analyzing the expression of cell cycle-related genes. EGCG application to culture media moderately inhibited the growth of nHTFs, and the removal of EGCG from culture media led to complete recovery of cell growth. EGCG resulted in a(More)
Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized(More)
Recent experiments have produced mixed results in terms of performance when, after learning a sequential task, the same visual-spatial coordinates or the same motor coordinates were reinstated on a subsequent effector transfer test. Given the diversity of tasks and especially sequence characteristics used in previous experiments, the cross-experimental(More)
Epigallocatechin-3-O-gallate (EGCG), the major polyphenolic compound present in green tea, has potent anti-oxidant and free radical-scavenging activities. In this study, various concentrations (10, 100, and 1,000 ppm) of EGCG were incorporated into a collagen sponge (CS) in order to investigate its healing effects on full-thickness wounds created in type 2(More)