Learn More
The retrograde transport of Trk-containing endosomes from the axon to the cell body by cytoplasmic dynein is necessary for axonal and neuronal survival. We investigated the recruitment of dynein to signaling endosomes in rat embryonic neurons and PC12 cells. We identified a novel phosphoserine on the dynein intermediate chains (ICs), and we observed a(More)
Retrograde communication from axonal targets to neuronal cell bodies is critical for both the development and function of the nervous system. Much progress has been made in recent years linking long-distance, retrograde signaling to a signaling endosome, yet the mechanisms governing the trafficking and signaling of these endosomes remain mostly(More)
BACKGROUND AND AIMS Formation of cluster roots is one of the most specific root adaptations to nutrient deficiency. In white lupin (Lupinus albus), cluster roots can be induced by phosphorus (P) or iron (Fe) deficiency. The aim of the present work was to investigate the potential shared signalling pathway in P- and Fe-deficiency-induced cluster root(More)
Development of a functional peripheral nervous system requires axons to rapidly innervate and arborize into final target organs and then slow but not halt their growth to establish stable connections while keeping pace with organ growth. Here we examine the role of the NGF-TrkA effector protein, Coronin-1, on postganglionic sympathetic neuron final target(More)
Formation of cluster roots is a typical morphological response to phosphorus (P) deficiency in white lupin (Lupinus albus), but its physiological and molecular mechanisms are still unclear. We investigated the role of auxin in the initiation of cluster roots by distinguishing the sources of auxin, measuring the longitudinal distribution patterns of free(More)
Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target(More)
s / Int. J. Devl Neuroscience 47 (2015) 1–131 109 dependent Coronin-1 expression increases permitting NGF-TrkA dependent calcium signaling which decreases axon growth rate and branching, ensuring that neurons terminate appropriately at their target organ. http://dx.doi.org/10.1016/j.ijdevneu.2015.04.296
Retrograde communication from axonal targets to neuronal cell bodies is critical for both development and function of the nervous system. Much progress has been made in recent years linking long-distance, retrograde signaling to a signaling endosome, yet the mechanisms governing the trafficking and signaling of these endosomes remain mainly uncharacterized.(More)
  • 1