Learn More
Axonal cytoskeletal and cytosolic proteins are synthesized in the neuronal cell body and transported along axons by slow axonal transport, but attempts to observe this movement directly in living cells have yielded conflicting results. Here we report the direct observation of the axonal transport of neurofilament protein tagged with green fluorescent(More)
The p63 gene, a homologue of the tumour-suppressor p53, is highly expressed in the basal or progenitor layers of many epithelial tissues. Here we report that mice homozygous for a disrupted p63 gene have major defects in their limb, craniofacial and epithelial development. p63 is expressed in the ectodermal surfaces of the limb buds, branchial arches and(More)
math5 is a murine orthologue of atonal, a bHLH proneural gene essential for the formation of photoreceptors and chordotonal organs in Drosophila. The expression of math5 coincides with the onset of retinal ganglion cell (RGC) differentiation. Targeted deletion of math5 blocks the initial differentiation of 80% of RGCs and results in an increase in(More)
We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends-PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative(More)
MACF (microtubule actin cross-linking factor) is a large, 608-kDa protein that can associate with both actin microfilaments and microtubules (MTs). Structurally, MACF can be divided into 3 domains: an N-terminal domain that contains both a calponin type actin-binding domain and a plakin domain; a rod domain that is composed of 23 dystrophin-like spectrin(More)
The vertebrate central nervous system (CNS) has been traditionally thought to be inaccessible for the passenger lymphocytes of the immune system. This does not seem to be the case: activated T-lymphocytes can readily cross the endothelial blood-brain barrier (BBB) and some glial cells, notably the astrocytes, seem to be programmed to act as most efficient(More)
Recent studies indicate the existence of progenitor cells and their potential for neurogenesis in the subventricular zone (SVZ) and the hippocampus of the normal adult mammalian brain. However, the proliferative response and the specific cell types generated following traumatic brain injury have not been examined. This cellular response to CNS injury was(More)
The hippocampus is particularly vulnerable to traumatic brain injury (TBI), the consequences of which are manifested as learning and memory deficits. Following injury, substantive spontaneous cognitive recovery occurs, suggesting that innate repair mechanisms exist in the brain. However, the underlying mechanism contributing to this is largely unknown. The(More)
It is well known that the cognitive functions of juveniles recover to a greater extent than adult patients following traumatic brain injury (TBI). The exact mechanisms underlying this age-related disparity are unknown; however, we speculate that this improved recovery in juveniles following TBI may be associated with an endogenous neurogenic response in the(More)
Stem/progenitor cells reside throughout the adult CNS and are actively dividing in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. This neurogenic capacity of the SVZ and DG is enhanced following traumatic brain injury (TBI) suggesting that the adult brain has the inherent potential to restore populations lost to injury. This(More)