Dong Soo Hwang

Learn More
The 3,4-dihydroxyphenyl-l-alanine (Dopa)-containing proteins of mussel byssus play a critical role in wet adhesion and have inspired versatile new synthetic strategies for adhesives and coatings. Apparently, however, not all mussel adhesive proteins are beholden to Dopa chemistry. The cDNA-deduced sequence of Pvfp-1, a highly aromatic and redox active(More)
Previously, we designed and constructed a hybrid of the mussel adhesive protein (MAP) fp-151, which is a fusion protein with six type 1 (fp-1) decapeptide repeats at each type 5 (fp-5) terminus. Through various cell-adhesion analyses, we previously demonstrated that fp-151 has the potential to be used as a cell or tissue bioadhesive. In the present study,(More)
Mussel adhesive proteins (MAPs) have received increased attention as potential environmentally friendly adhesives under aqueous conditions and in medicine. However, attempts to produce functional recombinant MAPs (mainly foot protein type 1, fp-1) by several expression systems have failed. Even though we previously reported a functional expression of(More)
The adhesive plaques of Mytilus byssus are investigated increasingly to determine the molecular requirements for wet adhesion. Mfp-2 is the most abundant protein in the plaques, but little is known about its function. Analysis of Mfp-2 films using the surface forces apparatus detected no interaction between films or between a film and bare mica; however,(More)
Mussel adhesive proteins (MAPs) have been considered as potential underwater and medical bioadhesives. Previously, we reported a functional expression of recombinant MAP hybrid fp-151, which is a fusion protein with six type 1 (fp-1) decapeptide repeats at each type 5 (fp-5) terminus, with practical properties in Escherichia coli. In the present work, we(More)
The size and morphology of particulate wear debris retrieved from tissues around 18 failed total knee replacements (TKR) were characterized. Interfacial membranes from nine cemented and nine uncemented TKR were harvested from below the tibial components during revision surgery. Wear debris were extracted using papain and potassium hydroxide digestion.(More)
Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic(More)
Mussel foot proteins (mfps) have been investigated as a source of inspiration for the design of underwater coatings and adhesives. Recent analysis of various mfps by a surface forces apparatus (SFA) revealed that mfp-1 functions as a coating, whereas mfp-3 and mfp-5 resemble adhesive primers on mica surfaces. To further refine and elaborate the surface(More)
Phlorotannins are polyphenols of marine algae, particularly brown seaweed, having multiple biological activities. A reverse phase-high performance liquid chromatography method was developed for rapid and routine quantification of two major phlorotannins, dieckol and phlorofucofuroeckol-A (PFE-A), from boiling water- and organic solvent-extracts of brown(More)