Dong-Ping Yang

Learn More
Neurons communicate and transmit information predominantly through spikes. Given that experimentally observed neural spike trains in a variety of brain areas can be highly correlated, it is important to investigate how neurons process correlated inputs. Most previous work in this area studied the problem of correlation transfer analytically by making(More)
The brain is highly energy consuming, therefore is under strong selective pressure to achieve cost-efficiency in both cortical connectivities and activities. However, cost-efficiency as a design principle for cortical activities has been rarely studied. Especially it is not clear how cost-efficiency is related to ubiquitously observed multi-scale(More)
Evolutionary game theory is employed to study topological conditions of scale-free networks for the evolution of cooperation. We show that Apollonian Networks (ANs) are perfect scale-free networks, on which cooperation can spread to all individuals, even though there are initially only 3 or 4 hubs occupied by cooperators and all the others by defectors.(More)
A recent physiologically based model of the ascending arousal system is used to analyze the dynamics near the transition from wake to sleep, which corresponds to a saddle-node bifurcation at a critical point. A normal form is derived by approximating the dynamics by those of a particle in a parabolic potential well with dissipation. This mechanical analog(More)
A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time(More)
  • 1