Learn More
High-grade glioma is the most aggressive and severe brain tumor that leads to death of almost 50% patients in 1-2 years. Thus, accurate prognosis for glioma patients would provide essential guidelines for their treatment planning. Conventional survival prediction generally utilizes clinical information and limited handcrafted features from magnetic(More)
The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development. In the isointense phase (approximately 6-8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, resulting in extremely low tissue contrast(More)
Computed tomography (CT) is critical for various clinical applications , e.g., radiotherapy treatment planning and also PET attenuation correction. However, CT exposes radiation during acquisition, which may cause side effects to patients. Compared to CT, magnetic resonance imaging (MRI) is much safer and does not involve any radiations. Therefore,(More)
Personality research on social media is a hot topic recently due to the rapid development of social media as well as the central importance of personality study in psychology, but most studies are conducted on inadequate label samples. Our research aims to explore the usage of unlabeled samples to improve the prediction accuracy. By conducting n user study(More)
Autism spectrum disorder (ASD) is a neurodevelopment disease characterized by impairment of social interaction, language, behavior, and cognitive functions. Up to now, many imaging-based methods for ASD diagnosis have been developed. For example, one may extract abundant features from multi-modality images and then derive a discriminant function to map the(More)
Model based movie recommender systems have been thoroughly investigated in the past few years, and they rely on rating data. In this paper, we take into account unrateddata of genre information to improve the performance of movie recommendation. We propose a novel method to measure users' preference on movie genres, and use Pearson Correlation(More)