Learn More
Recently, we purified rare CXC chemokine receptor 4 expressing (CXCR4(+)) small stem cells (SCs) from the murine bone marrow (BM) that express markers characteristic for embryonic (E)SCs, epiblast (EP)SCs, and primordial germ cells (PGCs). We named these primitive cells very small embryonic-like (VSEL) SCs (VSELs). Our data indicate that VSELs are also(More)
Pulmonary fibrosis is a potentially life-threatening disease that may be caused by overt or asymptomatic inflammatory responses. However, the precise mechanisms by which tissue injury is translated into inflammation and consequent fibrosis remain to be established. Here, we show that in a lung injury model, bleomycin induced the secretion of IL-6 by(More)
Transglutaminase 2 (TG2) is a calcium-dependent enzyme that catalyzes the transamidation reaction. There is conflicting evidence on the role of TG2 in apoptosis. In this report, we show that TG2 increases in response to low level of oxidative stress, whereas TG2 diminishes under high stress conditions. Monitoring TG2 expression, activity and calcium(More)
Transglutaminase 4 is a member of enzyme family that catalyzes calcium-dependent posttranslational modification of proteins. Although transglutaminase 4 has been shown to have prostate-restricted expression pattern, little is known about the biological function of transglutaminase 4 in human. To gain insight into its role in prostate, we analyzed the(More)
Genetic material in the nucleus governs mechanisms related to cell proliferation, differentiation, and function. Thus, senescence and aging are directly tied to the change of nuclear function and structure. The most important mechanisms that affect cell senescence are: (i) telomere shortening; (ii) environmental stress-mediated accumulation of DNA(More)
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a disease characterized by pelvic pain, usually with urinary frequency. These symptoms make patients suffer from a poor quality of life. However, there is still a lack of consensus on the pathophysiology and curable treatment of IC/BPS. We have reviewed several candidates for the pathophysiology of(More)
Transglutaminase (TGase) 2 is a ubiquitously expressed enzyme that modifies proteins by cross-linking or polyamination. An aberrant activity of TGase 2 has implicated its possible roles in a variety of diseases including age-related cataracts. However, the molecular mechanism by which TGase 2 is activated has not been elucidated. In this report, we showed(More)
Transglutaminase 2 (TGase 2) is one of a family of enzymes that catalyze protein modification through the incorporation of polyamines into substrates or the formation of protein crosslinks. However, the physiological roles of TGase 2 are largely unknown. To elucidate the functions of TGase 2, we have searched for its interacting proteins. Here we show that(More)
Recently, we identified in adult tissues a population of Oct4(+)SSEA-1(+)Sca-1(+)lin(-)CD45(-) very small embryonic-like stem cells (VSELs). First, to address recent controversies on Oct4 expression in cells isolated from adult organs, we show here evidence that Oct4 promoter in bone marrow (BM)-derived VSELs has an open chromatin structure and is actively(More)
Transglutaminase 2 (TGase 2) is a bifunctional enzyme that catalyzes calcium-dependent transamidation and GTP binding/hydrolysis. The transamidation activity is proposed to be associated with several neurodegenerative disorders such as Alzheimer's and Hungtinton's disease. However, the regulation mechanism by which TGase 2 causes neurodegeneration is(More)