Learn More
For Brain-Computer Interface (BCI) systems that are designed for users with severe impairments of the oculomotor system, an appropriate mode of presenting stimuli to the user is crucial. To investigate whether multi-sensory integration can be exploited in the gaze-independent event-related potentials (ERP) speller and to enhance BCI performance, we designed(More)
OBJECTIVE Hybrid brain-computer interfaces (BCIs) have been proved to be more effective in mental control by combining another channel of physiologic control signals. Among those studies, little attention has been paid to the combined use of a steady-state visual evoked potential (SSVEP) and P300 potential, both providing the fastest and the most reliable(More)
When two coherent sounds with nearly similar frequencies are presented to each ear respectively with stereo headphones, the brain integrates the two signals and produces a sensation of a third sound called binaural beat (BB). Although earlier studies showed that BB could influence behavior and cognition, common agreement on the mechanism of BB has not been(More)
Most EEG-based brain-computer interface (BCI) paradigms include specific electrode positions. As the structures and activities of the brain vary with each individual, contributing channels should be chosen based on original records of BCIs. Phase measurement is an important approach in EEG analyses, but seldom used for channel selections. In this paper, the(More)
P300 speller is a traditional brain computer interface paradigm and focused by lots of current BCI researches. In this paper a support vector machine based recursive feature elimination method was adapted to select the optimal channels for character recognition. The margin distance between target and nontarget stimulus in feature space was evaluated by(More)