Dong-Hyuk Woo

Learn More
Plants have developed disparate regulatory pathways to adapt to environmental stresses. In this study, we identified MKK4 as an important mediator of plant response to osmotic stress. mkk4 mutants were more sensitive to high salt concentration than WT plants, exhibiting higher water-loss rates under dehydration conditions and additionally accumulating high(More)
Enforced Bcl-2 expression inhibits Myc-induced apoptosis and cooperates with Myc in transformation. Here we report that the synergy between Bcl-2 and Myc in transforming hematopoietic cells in fact reflects a Myc-induced pathway that selectively suppresses the expression of the Bcl-X(L) or Bcl-2 antiapoptotic protein. Myc activation suppresses Bcl-X(L) RNA(More)
Various transcription factors are involved in the response to environmental stresses in plants. In this study, we characterized AtERF71/HRE2, a member of the Arabidopsis AP2/ERF family, as an important regulator of the osmotic and hypoxic stress responses in plants. Transcript level of AtERF71/HRE2 was highly increased by anoxia, NaCl, mannitol, ABA, and MV(More)
Despite increasing reports that CCCH zinc finger proteins function in plant development and stress responses, the functions and molecular aspects of many CCCH zinc finger proteins remain uncharacterized. Here, we characterized the biological and molecular functions of AtC3H17, a unique Arabidopsis gene encoding a non-tandem CCCH zinc finger protein. AtC3H17(More)
Plants have developed various regulatory pathways to adapt to environmental stresses. In this study, we identified Arabidopsis MKKK20 as a regulator in the response to osmotic stress. mkkk20 mutants were found to be sensitive to high concentration of salt and showed higher water loss rates than wild-type (WT) plants under dehydration conditions. In(More)
The plant hormone, abscisic acid (ABA), is a main signal transducer that confers abiotic stress tolerance to plants. Although the pathway of ABA production and the genes catalyzing its biosynthesis are largely defined, the regulatory mechanism of ABA biosynthesis in response to abiotic stress remains much unknown. In this study, to identify upstream genes(More)
AtSFT12, an Arabidopsis Qc-SNARE protein, is localized to Golgi organelles and is involved in salt and osmotic stress responses via accumulation of Na + in vacuoles. To reduce the detrimental effects of environmental stresses, plants have evolved many defense mechanisms. Here, we identified an Arabidopsis Qc-SNARE gene, AtSFT12, involved in salt and osmotic(More)
Aurora A kinase has drawn considerable attention as a therapeutic target for cancer therapy. However, the underlying molecular and cellular mechanisms of the anticancer effects of Aurora A kinase inhibition are still not fully understood. Herein, we show that depletion of Aurora A kinase by RNA interference (RNAi) in hepatocellular carcinoma (HCC) cells(More)
S-RBP11, a chloroplast protein, which was isolated using activation tagging system, is shown to be the first Arabidopsis small RNA-binding group protein involved in oxidative and salt stress responses. Activation tagging is one of the most powerful tools in reverse genetics. In this study, we isolated S-RBP11, encoding a small RNA-binding protein in(More)
AtNAP , an Arabidopsis NAC transcription factor family gene, functions as a negative regulator via transcriptional repression of AREB1 in salt stress response. AtNAP is an NAC family transcription factor in Arabidopsis and is known to be a positive regulator of senescence. However, its exact function and underlying molecular mechanism in stress responses(More)
  • 1