Dong-Hun Chae

Learn More
We have fabricated single-electron transistors by alkanedithiol molecular self-assembly. The devices consist of spontaneously formed ultrasmall Au nanoparticles linked by alkanedithiols to nanometer-spaced Au electrodes created by electromigration. The devices reproducibly exhibit addition energies of a few hundred meV, which enables the observation of(More)
Phonon-carrier interactions can have significant impact on device performance. They can be probed by measuring the phonon lifetime, which reflects the interaction strength of a phonon with other quasi-particles, in particular charge carriers as well as its companion phonons. The carrier phonon and phonon-phonon contributions to the phonon lifetime can be(More)
Single-molecule transistors incorporating trimetal molecules of Cu(3)(dpa)(4)Cl(2) and Ni(3)(dpa)(4)Cl(2) (dpa = 2,2'-dipyridylamide) have been fabricated. Conductance is measured as a function of bias and gate voltages at low temperature, showing single-electron tunneling behavior through the molecules. Additional structures corresponding to the(More)
We investigate the role of electron-hole correlations in the absorption of free-standing monolayer and bilayer graphene using optical transmission spectroscopy from 1.5 to 5.5 eV. Line shape analysis demonstrates that the ultraviolet region is dominated by an asymmetric Fano resonance. We attribute this to an excitonic resonance that forms near the van Hove(More)
We report on interlayer and lateral electronic transport measurements in two stacked graphene monolayers which have separate electrical contacts. The current-voltage characteristic across the two layers shows linear Ohmic behavior at zero magnetic field. At high magnetic fields, sequences of quantum Hall plateaus of the overlap region with filling factors(More)
Precise graphene patterning is of critical importance for tailor-made and sophisticated two-dimensional nanoelectronic and optical devices. However, graphene-based heterostructures have been grown by delicate multistep chemical vapor deposition methods, limiting preparation of versatile heterostructures. Here, we report one-pot synthesis of(More)
We report the observation of coherent lattice vibrations in mono- and few-layer WSe2 in the time domain, which were obtained by performing time-resolved transmission measurements. Upon the excitation of ultrashort pulses with the energy resonant to that of A excitons, coherent oscillations of the A1g optical phonon and longitudinal acoustic phonon at the M(More)
Cyclo[6]- and cyclo[8]pyrrole, two aromatic expanded porphyrins, were studied in a single-molecule transistor (SMT) setup. The analyses of these compounds allowed us to observe an uncommon absence of an even-odd effect in the Kondo resonance in discrete, metal-free organic macrocyclic compounds. The findings from the SMT measurements of these cyclopyrroles(More)