Learn More
Single-molecule transistors incorporating trimetal molecules of Cu(3)(dpa)(4)Cl(2) and Ni(3)(dpa)(4)Cl(2) (dpa = 2,2'-dipyridylamide) have been fabricated. Conductance is measured as a function of bias and gate voltages at low temperature, showing single-electron tunneling behavior through the molecules. Additional structures corresponding to the(More)
We have fabricated single-electron transistors by alkanedithiol molecular self-assembly. The devices consist of spontaneously formed ultrasmall Au nanoparticles linked by alkanedithiols to nanometer-spaced Au electrodes created by electromigration. The devices reproducibly exhibit addition energies of a few hundred meV, which enables the observation of(More)
Precise graphene patterning is of critical importance for tailor-made and sophisticated two-dimensional nanoelectronic and optical devices. However, graphene-based heterostructures have been grown by delicate multistep chemical vapor deposition methods, limiting preparation of versatile heterostructures. Here, we report one-pot synthesis of(More)
We report the observation of coherent lattice vibrations in mono- and few-layer WSe2 in the time domain, which were obtained by performing time-resolved transmission measurements. Upon the excitation of ultrashort pulses with the energy resonant to that of A excitons, coherent oscillations of the A1g optical phonon and longitudinal acoustic phonon at the M(More)
Cyclo[6]- and cyclo[8]pyrrole, two aromatic expanded porphyrins, were studied in a single-molecule transistor (SMT) setup. The analyses of these compounds allowed us to observe an uncommon absence of an even-odd effect in the Kondo resonance in discrete, metal-free organic macrocyclic compounds. The findings from the SMT measurements of these cyclopyrroles(More)
  • 1