Learn More
Characteristic changes in cell morphology paralleled by the appearance of a multitude of molecular and biochemical markers occur during apoptosis. These changes vary depending on the cell type, mechanism of induction of apoptosis, and the time-window at which the process of apoptosis is analyzed. By virtue of the capability of rapid measurement of(More)
A cell undergoing apoptosis demonstrates multitude of characteristic morphological and biochemical features, which vary depending on the inducer of apoptosis, cell type and the "time window" at which the process of apoptosis is observed. Because the gross majority of apoptotic hallmarks can be revealed by flow and image cytometry, the cytometric methods(More)
Tumor cell demise is an important event in the elimination of abnormal malignant cells and provides an important mechanism of natural tumor suppression. Abnormalities incapacitating these finely tuned processes provide a strong advantage for cancer clones to succeed in evading both the physiological control systems and therapeutic intervention. Expanding(More)
OBJECTIVE A dietary compound curcumin hardwires to multiple cellular processes, with suppression of cell proliferation, induction of apoptosis, and inhibition of metastasis considered as the major mechanisms underlying its anticancer properties. Based on our recent evidence that curcumin triggers cell demise in follicular lymphoma (FL) cells, we aimed to(More)
The intrinsic pathway of apoptosis relies on mitochondrial membrane permeabilization, with Bcl-2 proteins serving as its master regulators. They form a complex network of interactions both within the family and with multiple cellular factors outside the family. The understanding of the processes that regulate mitochondrial breach, and mechanisms that direct(More)
Quantification of programmed and accidental cell death provides useful end-points for the anticancer drug efficacy assessment. Cell death is, however, a stochastic process. Therefore, the opportunity to dynamically quantify individual cellular states is advantageous over the commonly employed static, end-point assays. In this work, we describe the(More)
Stem cells hold great promise as a means of treating otherwise incurable, degenerative diseases due to their ability both to self-renew and differentiate. However, stem cell damage can also play a role in the disease with the formation of solid tumors and leukaemias such as chronic myeloid leukaemia (CML), a hematopoietic stem cell (HSC) disorder. Despite(More)
Despite the progress in targeting particular molecular abnormalities specific to different cancers (targeted therapy), chemo- and radiotherapies are still the most effective of all anticancer modalities. Induction of DNA damage and inhibition of cell proliferation are the objects of most chemotherapeutic agents and radiation. Their effectiveness was(More)
Limitations imposed by conventional analytical technologies for cell biology, such as flow cytometry or microplate imaging, are often prohibitive for the kinetic analysis of single-cell responses to therapeutic compounds. In this paper, we describe the application of a microfluidic array to the real-time screening of anticancer drugs against arrays of(More)
OBJECTIVE Although responsive to first-line treatments, follicular lymphoma (FL) remains a fatal disease of increasing worldwide incidence. In efforts to find novel approaches to inhibit proliferation and induce apoptosis in FL cells, we examined the action of naturally occurring compound curcumin in the three recently established FL cell lines. MATERIALS(More)