Donald W. Schwendeman

Learn More
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Abstract This paper describes an approach for the numerical solution of time-dependent(More)
This paper considers the Riemann problem and an associated Godunov method for a model of compressible two-phase flow. The model is a reduced form of the well-known Baer–Nunziato model that describes the behavior of gran-ular explosives. In the analysis presented here, we omit source terms representing the exchange of mass, momentum and energy between the(More)
We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids.(More)
We describe a mixed Eulerian-Lagrangian approach for solving fluid-structure interaction (FSI) problems. The technique, which uses deforming composite grids (DCG), is applied to FSI problems that couple high speed compressible flow with elastic solids. The fluid and solid domains are discretized with composite overlapping grids. Curvilinear grids are(More)
This paper presents a new computational framework for the simulation of solid mechanics on general overlapping grids with adaptive mesh refinement (AMR). The approach, described here for time-dependent linear elasticity in two and three space dimensions, is motivated by considerations of accuracy, efficiency and flexibility. We consider two approaches for(More)
Stable partitioned algorithms for fluid-structure interaction (FSI) problems are developed and analyzed in this two-part paper. Part I describes an algorithm for incompressible flow coupled with compressible elastic solids, while Part II discusses an algorithm for incompressible flow coupled with structural shells. The numerical approach described here for(More)
Stable partitioned algorithms for fluid-structure interaction (FSI) problems are developed and analyzed in this two-part paper. Part I describes an algorithm for incompressible flow coupled with compressible elastic solids, while Part II discusses an algorithm for incompressible flow coupled with structural shells. Importantly, these new added-mass(More)
An added-mass partitioned (AMP) algorithm is described for solving fluid-structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are(More)