Learn More
Activating mutations of the FMS-like tyrosine kinase-3 (FLT3) receptor occur in approximately 30% of acute myeloid leukemia (AML) patients and, at least for internal tandem duplication (ITD) mutations, are associated with poor prognosis. FLT3 mutations trigger downstream signaling pathways including RAS-MAP/AKT kinases and signal transducer and activator of(More)
FMS-like tyrosine kinase-3 (FLT3), a receptor tyrosine kinase, is important for the development of the hematopoietic and immune systems. Activating mutations of FLT3 are now recognized as the most common molecular abnormality in acute myeloid leukemia, and FLT3 mutations may play a role in other hematologic malignancies as well. The poor prognosis of(More)
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in approximately 30% of patients with de novo acute myeloid leukemia (AML) and are associated with lower cure rates from standard chemotherapy-based treatment. Targeting the mutation by inhibiting the tyrosine kinase activity of FLT3 is cytotoxic to cell lines and primary AML cells(More)
Constitutively activating internal tandem duplication (ITD) mutations of the receptor tyrosine kinase FLT3 (Fms-like tyrosine kinase 3) play an important role in leukemogenesis, and their presence is associated with poor prognosis in acute myeloid leukemia (AML). To better understand FLT3 signaling in leukemogenesis, we have examined the changes in gene(More)
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in approximately one third of patients with acute myeloid leukemia (AML) and are associated with adverse prognosis. The important role played by FLT3 in the survival and proliferation of blasts, and its overexpression in most patients with AML, make FLT3 an attractive therapeutic target.(More)
Eucaryotic DNA is organized into a series of supercoiled loops that are anchored to the nuclear matrix. When these DNA loops are cleaved by endonucleases, the DNA sequences which remain associated with the nuclear matrix can be recovered and analyzed for their content of specific genes. Using restriction endonucleases to cleave the loops, we demonstrate(More)
In spite of advances in the treatment of pediatric acute lymphoblastic leukemia (ALL), a significant number of children with ALL are not cured of their disease. We and others have shown that signaling from the bone marrow microenvironment confers therapeutic resistance, and that the interaction between CXCR4 and stromal cell-derived factor-1 (SDF-1 or(More)
Internal tandem duplication mutations of the FLT3 gene (FLT3/ITD mutations) are the most frequent molecular abnormality in acute myeloid leukemia (AML) and are associated with a poor overall survival. While the normal FLT3 receptor is expressed in early hematopoietic progenitor cells, it has not been determined whether FLT3 mutations are present in the(More)
Clinical evidence has shown that FLT3 internal tandem duplication (ITD) mutation confers poor prognosis in acute myeloid leukemia. Loss of the FLT3 wild-type (WT) allele is associated with even worse prognosis. We have previously reported that heterozygous FLT3(wt/ITD) "knockin" mice develop a slowly fatal myeloproliferative neoplasm (MPN). To study the(More)
Most cases of human acute myeloid leukemia (AML) engraft in irradiated non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Intravenous transfer of as few as 10(5) human AML cells resulted in engraftment. Cases with poor prognosis clinical features, including FLT3 mutations, tended to engraft efficiently. Nevertheless, AML cells obtained from(More)